机器学习–逻辑斯谛回归(Logistic Regression)
基本概念
逻辑斯谛回归(Logistic Regression)虽然带回归,却是经典的分类方法。逻辑斯谛回归模型属于对数线性模型。它在线性模型的基础上,使用 Sigmoid 函数,将线性模型的结果映射到 [0, 1] 之间,实现了具体值到概率的转换。
线性回归:
f ( x ) = w T x + b f(x)=w^Tx + b f(x)=wTx+b
Sigmoid:
S ( x ) = 1 1 + e − x S(x) = \frac{1}{1 + e^{-x}} S(x)=1+e−x1
l逻辑斯谛回归:
f ( x ) = S ( w T x ) = 1 1 + e − w T x + b f(x)=S(w^Tx)=\frac{1}{1+e^{-w^Tx +b}} f(x)=S(wTx)=1+e−wTx+b1
逻辑斯谛分布
设 X X X 是连续随机变量,当 X X X 服从逻辑斯谛分布时, X X X 的分布函数和密度函数可以表示为(《统计机器学习》):
F ( x ) = P ( X ≤ x ) = 1 1 + e − ( x − μ ) / γ F(x)=P(X\le x)=\frac{1}{1 + e^{-(x-\mu)/ \gamma}} F(x)=P(X≤x)=1+e−(x−μ)/γ1
f ( x ) = F ′ ( x ) = e − ( x − μ ) / γ γ ( 1 + e − ( x − μ ) / γ ) 2 f(x)=F^{'}(x)=\frac{e^{-(x-\mu)/\gamma}}{\gamma(1+e^{-(x-\mu)/\gamma})^2} f(x)=F′(x)=γ(1+e−(x−μ)/γ)2e−(x−μ)/γ
其中, μ \mu μ 为位置参数, γ > 0 \gamma > 0 γ>0 为形状参数。
二项逻辑斯谛回归
二项逻辑斯谛回归模型(binomial logistic regression model)是一种分类模型。并且分类结果只有0和1两种。