机器学习--逻辑斯谛回归(Logistic Regression)

逻辑斯谛回归是一种分类方法,通过Sigmoid函数将线性模型映射到[0,1]区间,用于概率预测。文章介绍了基本概念、逻辑斯谛分布、二项逻辑斯谛回归和代价函数,以及模型的训练过程,包括极大似然估计和梯度下降法。" 107957193,6604727,ScheduledThreadPoolExecutor退出策略详解,"['java', '线程池', 'ScheduledThread']
摘要由CSDN通过智能技术生成

机器学习–逻辑斯谛回归(Logistic Regression)

基本概念

逻辑斯谛回归(Logistic Regression)虽然带回归,却是经典的分类方法。逻辑斯谛回归模型属于对数线性模型。它在线性模型的基础上,使用 Sigmoid 函数,将线性模型的结果映射到 [0, 1] 之间,实现了具体值到概率的转换。

线性回归:
f ( x ) = w T x + b f(x)=w^Tx + b f(x)=wTx+b
Sigmoid:
S ( x ) = 1 1 + e − x S(x) = \frac{1}{1 + e^{-x}} S(x)=1+ex1
l逻辑斯谛回归:
f ( x ) = S ( w T x ) = 1 1 + e − w T x + b f(x)=S(w^Tx)=\frac{1}{1+e^{-w^Tx +b}} f(x)=S(wTx)=1+ewTx+b1

逻辑斯谛分布

X X X 是连续随机变量,当 X X X 服从逻辑斯谛分布时, X X X 的分布函数和密度函数可以表示为(《统计机器学习》):
F ( x ) = P ( X ≤ x ) = 1 1 + e − ( x − μ ) / γ F(x)=P(X\le x)=\frac{1}{1 + e^{-(x-\mu)/ \gamma}} F(x)=P(Xx)=1+e(xμ)/γ1
f ( x ) = F ′ ( x ) = e − ( x − μ ) / γ γ ( 1 + e − ( x − μ ) / γ ) 2 f(x)=F^{'}(x)=\frac{e^{-(x-\mu)/\gamma}}{\gamma(1+e^{-(x-\mu)/\gamma})^2} f(x)=F(x)=γ(1+e(xμ)/γ)2e(xμ)/γ
其中, μ \mu μ 为位置参数, γ > 0 \gamma > 0 γ>0 为形状参数。

二项逻辑斯谛回归

二项逻辑斯谛回归模型(binomial logistic regression model)是一种分类模型。并且分类结果只有0和1两种。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值