树与二叉树

树与二叉树


术语:

叶子结点:度为0的结点

树的度:


二叉树


定义:

特点:

  • 每个结点的度<=;
  • 是有序树

二叉树的性质:

  1. 若二叉树的层次从1开始,则在二叉树的第i层最多有2^{i-1}个结点
  2. 深度为k的二叉树最多有2^{k}-1个结点(k>=1)
  3. 对任何一颗二叉树,如果其叶子结点个数为n0,度为2的叶子结点个数为n2,则有n0=n2+1
  4. 具有n个结点的完全二叉树的深度为{log2N}+1
  5. 如果将一颗有n个结点的完全二叉树的结点按层序连续编号1,2...n,然后按此结点编号将树中各结点顺序地存放于一个一维数组中,并简称编号为i的结点为结点i。则有以下关系:
  • 若i==1,则i是二叉树的根,无双亲
  • 若i>1,则i的双亲为【i/2】
  • 若2*i<=n,则i的左孩子为2*i,否则则无左孩子
  • 若2*i+1<=n,则i的右孩子为2*i+1,否则无右孩子
  • 若i为偶数,且i!=n,则其右兄弟为i+1
  • 若i为奇数,且i!=1,则其左兄弟为i-1
  • i所在层次为{log2i}+1

存储:

顺序存储

连式存储

二叉链表的定义:

typedef struct BiTnode
{
    TElemType data;
    Struct BiTNode *lchild,*rchild;
}BiTNode,*BiTree;

三叉链表的定义:

二叉树的遍历:按照某种次序访问树中的结点,并且每个结点仅且访问一次。

遍历的结果:产生一个关于结点的线性序列

设访问根节点记作D,右子树记作R,左子树记作L,则可能的顺序有:

先序中序后序逆先序逆中序逆后序
DLRLDRLRDDRLRDLRLD

线索二叉树


线索:指向结点前驱和后继的指针

若结点有左孩子,则lchild指示其左孩子,否则lchild存储指向该结点前驱结点的指针

若结点有右孩子,则rchild指示其右孩子,否则rchild存储指向该结点后继结点的指针

实质:对一个非线性结构进行线性化操作,使每个结点


哈夫曼树及其应用


路径长度:连接两结点的路径上的分支数

树的路径长度:各结点根结点的路径长度之和

哈夫曼树:带权路径长度达到最小的二叉树即为哈夫曼树(最优二叉树)

在哈夫曼树中,权值大的结点离根最近。

  1. 哈夫曼树的构造:假设有n个权值,则构造出的哈夫曼树有n个叶子节点,n个权值分别设为w1,w2...wn,则哈夫曼树构造规则是:
  2. 将w1,w2...wn看成是有n棵树的森林(每棵树仅有一个结点)
  3. 在森林中选出两个根节点的权值最小的树合并,作为一颗新树的左右子树,且新树的根节点权值为其左右子树根节点的权值之和。
  4. 从森林中删除选取的两棵树,并将新树加入森林
  5. 重复2,3步,直到森林中只剩下一棵树,这棵树就是我们所求的哈夫曼树

哈夫曼编码

主要用途是实现数据压缩,左分支赋0,右分支赋1,得哈夫曼编码(变长编码)

总编码长度正好等于哈夫曼树的带权路径长度WPL

哈夫曼编码是一种无前缀的编码,解码时不会混淆。


树和森林及其与二叉树之间的转换


树的存储方法:

双亲表示法:以一组连续的存储单元来存放树中的结点,每个结点有两个域,一个是data域,存放结点信息,另一个是parent域,用来存放双亲的位置(指针)。

孩子表示法:将一个结点所有孩子链接成一个单链表型,而树中有若干个结点,固有若干个单链表,每个单链表有一个表头结点,所以表头结点用一个数组来描述。

双亲孩子表示法:将上述两种方法结合起来。

孩子兄弟表示法:类似于二叉链表,但第一根链指向第一个孩子,第二根链指向下一个兄弟。

数转换成二叉树:

  1. 相邻兄弟之间连线
  2. 抹掉双亲与除左孩子之外其他孩子之间的连线
  3. 将树作适当的旋转

森林转成二叉树:

  1. 将森林中每一棵树分别转成二叉树
  2. 使第n棵树接入到第n-1棵的右边并成为它的右子树,第n-1棵树接入到第n-2棵的右边并成为它的右子树...,第2棵二叉树接入到第1棵树的右边并成为它的右子树,直到最后剩下一棵二叉树为止。

二叉树还原成树或者森林:

  1. 将二叉树的根结点的右链及右链的右链全部断开,得到若干棵无右子树的二叉树
  2. 将1中得到的每一棵二叉树都还原成树(与树转换成二叉树的步骤刚好相反)

树和森林的遍历

在树和森林中,一个结点可能有两棵以上的子树,所以不宜讨论它们的中序遍历,即树和森林只有先序和后序遍历。

先序遍历:

树的先序遍历:若树非空,则先访问根节点,然后依次先序遍历各子树

森林的先序遍历:若森林非空,则先访问森林中第一棵树的根节点,再先序遍历第一棵树的各子树,接着先序遍历第二棵树、第三棵树、....、知道最后一棵

后序遍历:

树的后序遍历:若树非空,则依次后序遍历各子树,最后访问根节点。

森林的后序遍历:按顺序后序遍历森林中的每一棵树。

另外,请注意,树和森林的先序遍历等价于它转换成的二叉树的先序遍历,树和森林的后序遍历等价于它转换成二叉树的中序遍历。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值