house robbers

动态规划,house robber系列三道题:

第一道题:

         没有限制,因此直接用动态规划就可以做,这里有两种方式:

第一种,空间省,时间稍微多一些: 只有两个数值,lastTotal 和reTotal来记录获得的金钱多少

class Solution:
    def rob(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        if len(nums)<1:
            return 0
        if len(nums)<2:
            return nums[0]
        lastTotal = 0
        reTotal  = nums[0]
        for i in range(1,len(nums)):
            lastTotal,reTotal =reTotal,max(reTotal,lastTotal+nums[i])
        return reTotal

第二种,时间快,空间上采用了数值,用一个和nums等长的数组来记录这些值:

class Solution:
    def rob(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        if len(nums)==0:
            return 0
        elif len(nums)<2:
            return nums[0]
        money = [0]*len(nums)
        money[0],money[1] = nums[0],max(nums[0],nums[1])
        for i in range(2,len(nums)):
            money[i] = max(nums[i]+money[i-2],money[i-1])
        return money[-1]

第二道题:

       开始有了限制,把商店围城了一个圈,那么分析完,得到的结论就是,只要不同时抢劫第一家和最后一家店即可。

这里采用了分类讨论,两种情况,第一种,抢劫范围为第一家到倒数第二家店。第二种情况,抢劫范围为第二家到最后一家店。然后比较,返回两者之间的最大值。

        同样的,也有可以采用第一道题的空间时间策略,分类讨论即可。

class Solution:
    def rob(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        if len(nums)==0:
            return 0
        elif len(nums) == 1:
            return nums[0]
        lastTotal  = 0
        retotal = nums[0]
        for i in range(1,len(nums)-1):
            lastTotal,retotal = retotal,max(retotal,lastTotal+nums[i])
        lastTotal2 = 0
        retotal2 = nums[1]
        for i in range(2,len(nums)):
            lastTotal2,retotal2 = retotal2,max(retotal2,lastTotal2+nums[i])
        print(retotal)
        print(retotal2)    
        return max(retotal,retotal2)
class Solution:
    def rob(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        if len(nums)==0:
            return 0
        elif len(nums) ==1:
            return nums[0]
        elif len(nums) == 2:
            return max(nums[0],nums[1])
        elif len(nums) == 3:
            return max(nums[0],nums[1],nums[2])
        total = [0]*(len(nums)-1)
        total2 = [0]*(len(nums))
        total[0] = nums[0]
        total[1] = max(nums[0],nums[1])
        
        for i in range(2,len(nums)-1):
            total[i] = max(total[i-2]+nums[i],total[i-1])
        total2[1] = nums[1]
        total2[2] = max(nums[1],nums[2])
        for i in range(3,len(nums)):
            total2[i] = max(total2[i-2]+nums[i],total2[i-1])
        return max(total[-1],total2[-1])

第三道题:

       二叉树的运用,这里最原先的想法是用root.val+root.left.left.val+root.left.right+root.right.left.val+root.right.right与root.left.val+root.right.val对比,但是运行时间耗时很长,迭代不简洁,看了别人的代码,想法是每一个节点,记录两种情况,抢劫当前节点和不抢劫当前节点获得的钱数,这样,每次迭代的函数处理的节点就只有三个,三个节点分别为根节点和两个叶子节点:

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def rob(self, root):
        """
        :type root: TreeNode
        :rtype: int
        """
        def dfs(root):
            if not root: return (0,0)
            pickleft,nopickleft = dfs(root.left)
            pickright,nopickright = dfs(root.right)
            renPick = nopickleft +nopickright +root.val
            renNopick = max(pickleft,nopickleft) + max(pickright,nopickright) 
            return renPick,renNopick
        return max(dfs(root)[0],dfs(root)[1])
            

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值