Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
中文:给定一个三角形,找出自顶向下的最小路径和。每一步只能移动到下一行中相邻的结点上。
方法:
1.设置一个二维数组,最优三角形dp[][],并初始化数组元素为0.dp[i][j]代表了从底向上递推时,走到三角形第i行第j列的最优值。
2.从三角形底面向三角形上方进行动态规划:
a.动态规划的边界条件:底面上的最优值即为三角形的最后一层。
b.利用i循环,从倒数第二层递推到第一层。
第i行,第j列的最优解为d[i][j],可到达(i,j)的两个位置的最优解为dp[i+1][j],dp[i+1][j+1];
dp[i][j]=min(dp[i+1][j],dp[i+1][j+1])+triangle[i][j]
3.返回dp[0][0].
图解:
代码:
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
int n=triangle.size();
if(n==0)
return 0;
vector<vector<int>> dp;
for(int i=0;i<n;i++){ //初始化dp
dp.push_back(vector<int> {});
for(int j=0;j<n;j++){
dp[i].push_back(0);
}
}
for(int i=0;i<n;i++){ //dp的最后一行等于原三角形的最后一行
dp[n-1][i]=triangle[n-1][i];
}
for(int i=n-2;i>=0;i--){ //从倒数第二行向上
for(int j=0;j<n;j++){
dp[i][j]=min(dp[i+1][j],dp[i+1][j+1])+triangle[i][j];
}
}
return dp[0][0];
}
};
不过此代码好像通过不了,思路应该没问题,于是参考了另外的写法。。。
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
for(int i = triangle.size() - 2; i >= 0; i--) {
for(int j = 0; j <= i; j++) {
triangle[i][j] += min(triangle[i+1][j], triangle[i+1][j+1]);
}
}
return triangle[0][0];
}
};