Meta公司一直是图像和视频模型开发的先锋,最近他们推出了一项名为Meta Sapiens的新模型,专注于与人类相关的任务。与Homo sapiens(智人)相似,Meta Sapiens模型旨在理解和模拟人类行为,包括理解身体姿势、识别身体部位、预测深度,甚至确定皮肤纹理等表面细节。本文将详细解析Meta Sapiens模型的三大支柱、技术实现以及代码实践。
Meta Sapiens 的三大支柱
Meta Sapiens模型的核心在于三个关键品质:泛化、广泛适用和高保真度。
- 泛化:模型能够在多种不同情况下表现良好,包括不同的光照条件、相机角度和各类衣物。
- 广泛适用:模型能够执行多种任务,如姿势估计、身体部位识别和距离预测,无需大的改动。
- 高保真度:模型能够创建高质量、详细的结果,如逼真的3D人体模型,具有清晰的面部特征和身体形状。
技术实现
Meta Sapiens模型使用了一些强大的技术来实现这些任务,包括MAE(蒙版自动编码器)和关键点及分割技术。
- MAE(蒙版自动编码器):通过查看缺少部分的图像并尝试填补空白,使模型更好地理解图像并节省训练时间。
- 关键点和分割:模型识别人体上的308个点,包括手、脚、脸和躯干,并知道约28个不同的身体部位,从头发到嘴唇再到四肢,非常详细。
2D 姿势估计
2D姿势估计任务要求模型猜测关键身体部位的位置。该模型通过创建“热图”来工作,显示身体部位在特定位置的可能性。
架构
- 输入:图像 I ∈ R H × W × 3 I \in R^{H×W×3} I∈RH×W×3,其中H为高度,W为宽度。
- 步骤1:重新缩放图像 — 输入图像被调整为固定高度H和宽度W。
- 步骤2:姿势估计变换器§ — 变换器模型处理图像以预测关键点位置。
- 步骤3:损失函数(均方误差) — 使用均方误差(MSE)计算预测的热图与实际位置的差异。
- 步骤4:编码器-解码器架构 — 使用预训练的权重初始化编码器,而解码器则随机初始化。
代码实现
以下是姿势估计的代码实现,包括模型加载、图像预处理、关键点检测和可视化。
# 模型加载
TASK = 'pose'
VERSION = 'sapiens_1b'
model_path = get_model_path(TASK, VERSION)
print(model_path)
# 图像预处理和姿势估计
def get_pose(image, pose_estimator, input_shape=(3, 1024, 768), device="cuda"):
# Preprocess the image
img = preprocess_image(image, input_shape)
# Run the model
with torch.no_grad():
heatmap = pose_estimator(img.to(device))
# Post-process the output
keypoints, keypoint_scores = udp_decode(heatmap[0].cpu().float().numpy(),
input_shape[1:],
(input_shape[1] // 4, input_shape[2] // 4))
# Scale keypoints to original image size
scale_x = image.width / input_shape[2]
scale_y = image.height / input_shape[1]
keypoints[:, 0] *= scale_x
keypoints[:, 1] *= scale_y
# Visualize the keypoints on the original image
pose_image = visualize_keypoints(image, keypoints, keypoint_scores)
return pose_image
def preprocess_image(image, input_shape):
# Resize and normalize the image
img = image.resize((input_shape[2], input_shape[1]))
img = np.array(img).transpose(2, 0, 1)
img = torch.from_numpy(img).float()
img = img[[2, 1, 0], ...] # RGB to BGR
mean = torch.tensor([123.675, 116.28, 103.53]).view(3, 1, 1)
std = torch.tensor([58.395, 57.12, 57.375]).view(3, 1, 1)
img = (img - mean) / std
return img.unsqueeze(0)
def udp_decode(heatmap, img_size, heatmap_size):
# This is a simplified version. You might need to implement the full UDP decode logic
h, w = heatmap_size
keypoints = np.zeros((heatmap.shape[0], 2))
keypoint_scores = np.zeros(heatmap.shape[0])
for i in range(heatmap.shape[0]):
hm = heatmap[i]
idx = np.unravel_index(np.argmax(hm), hm.shape)
keypoints[i] = [idx[1] * img_size[1] / w, idx[0] * img_size[0] / h]
keypoint_scores[i] = hm[idx]
return keypoints, keypoint_scores
def visualize_keypoints(image, keypoints, keypoint_scores, threshold=0.3):
draw = ImageDraw.Draw(image)
for (x, y), score in zip(keypoints, keypoint_scores):
if score > threshold:
draw.ellipse([(x-2, y-2), (x+2, y+2)], fill='red', outline='red')
return image
身体部位分割
身体部位分割任务中,模型对图像中的每个像素进行分类,将其分解为手臂、腿或脸等身体部位。
架构
- 输入:图像 I ∈ R H × W × 3 I \in R^{H×W×3} I∈RH×W×3。
- 步骤1:编码器-解码器架构 — 身体部位分割模型遵循与姿势估计相同的编码器-解码器设置。
- 步骤2:像素分类 — 模型将图像的每个像素分类为C个身体部位类别之一。
- 步骤3:损失函数(加权交叉熵) — 使用加权交叉熵损失进行微调。
代码实现
以下是身体部位分割的代码实现,包括模型加载、图像预处理和可视化。
# 模型加载
def get_model_path(task, version):
try:
model_path = SAPIENS_LITE_MODELS_PATH[task][version]
if not os.path.exists(model_path):
print(f"Warning: The model file does not exist at {model_path}")
return model_path
except KeyError as e:
print(f"Error: Invalid task or version. {e}")
return None
TASK = 'seg'
VERSION = 'sapiens_0.3b'
model_path = get_model_path(TASK, VERSION)
print(model_path)
# 图像分割
def segment(image):
input_tensor = transform_fn(image).unsqueeze(0).to("cuda")
preds = run_model(input_tensor, height=image.height, width=image.width)
mask = preds.squeeze(0).cpu().numpy()
mask_image = Image.fromarray(mask.astype("uint8"))
blended_image = visualize_mask_with_overlay(image, mask_image, LABELS_TO_IDS, alpha=0.5)
return blended_image
深度估计
深度估计任务有助于模型了解图像不同部分的距离,这对于增强现实等任务很重要。
架构
- 输入:图像 I ∈ R H × W × 3 I \in R^{H×W×3} I∈RH×W×3。
- 步骤1:编码器-解码器架构 — 编码器从图像中提取特征,解码器预测每个像素的深度。
- 步骤2:单通道深度图 — 输出通道设置为1,生成深度图。
- 步骤3:损失函数(回归) — 将预测的深度值与地面实况进行比较,并使用回归损失最小化差异。
代码实现
以下是深度估计的代码实现,包括模型加载、图像预处理和可视化。
# 模型加载
TASK = 'depth'
VERSION = 'sapiens_0.3b'
model_path = get_model_path(TASK, VERSION)
print(model_path)
def get_depth(image, depth_model, input_shape=(3, 1024, 768), device="cuda"):
# Preprocess the image
img = preprocess_image(image, input_shape)
# Run the model
with torch.no_grad():
result = depth_model(img.to(device))
# Post-process the output
depth_map = post_process_depth(result, (image.shape[0], image.shape[1]))
# Visualize the depth map
depth_image = visualize_depth(depth_map)
return depth_image, depth_map
def preprocess_image(image, input_shape):
img = cv2.resize(image, (input_shape[2], input_shape[1]), interpolation=cv2.INTER_LINEAR).transpose(2, 0, 1)
img = torch.from_numpy(img)
img = img[[2, 1, 0], ...].float()
mean = torch.tensor([123.5, 116.5, 103.5]).view(-1, 1, 1)
std = torch.tensor([58.5, 57.0, 57.5]).view(-1, 1, 1)
img = (img - mean) / std
return img.unsqueeze(0)
def post_process_depth(result, original_shape):
# Check the dimensionality of the result
if result.dim() == 3:
result = result.unsqueeze(0)
elif result.dim() == 4:
pass
else:
raise ValueError(f"Unexpected result dimension: {result.dim()}")
# Ensure we're interpolating to the correct dimensions
seg_logits = F.interpolate(result, size=original_shape, mode="bilinear", align_corners=False).squeeze(0)
depth_map = seg_logits.data.float().cpu().numpy()
# If depth_map has an extra dimension, squeeze it
if depth_map.ndim == 3 and depth_map.shape[0] == 1:
depth_map = depth_map.squeeze(0)
return depth_map
def visualize_depth(depth_map):
# Normalize the depth map
min_val, max_val = np.nanmin(depth_map), np.nanmax(depth_map)
depth_normalized = 1 - ((depth_map - min_val) / (max_val - min_val))
# Convert to uint8
depth_normalized = (depth_normalized * 255).astype(np.uint8)
# Apply colormap
depth_colored = cv2.applyColorMap(depth_normalized, cv2.COLORMAP_INFERNO)
return depth_colored
# You can add the surface normal calculation if needed
def calculate_surface_normal(depth_map):
kernel_size = 7
grad_x = cv2.Sobel(depth_map.astype(np.float32), cv2.CV_32F, 1, 0, ksize=kernel_size)
grad_y = cv2.Sobel(depth_map.astype(np.float32), cv2.CV_32F, 0, 1, ksize=kernel_size)
z = np.full(grad_x.shape, -1)
normals = np.dstack((-grad_x, -grad_y, z))
normals_mag = np.linalg.norm(normals, axis=2, keepdims=True)
with np.errstate(divide="ignore", invalid="ignore"):
normals_normalized = normals / (normals_mag + 1e-5)
normals_normalized = np.nan_to_num(normals_normalized, nan=-1, posinf=-1, neginf=-1)
normal_from_depth = ((normals_normalized + 1) / 2 * 255).astype(np.uint8)
normal_from_depth = normal_from_depth[:, :, ::-1] # RGB to BGR for cv2
return normal_from_depth
表面法线估计
表面法线估计任务让模型找出人体的3D表面细节,例如每个点的表面角度或方向。
架构
- 输入:图像(I ∈ R^H×W×3)。
- 步骤1:编码器-解码器架构 — 法线估计模型使用编码器-解码器框架。
- 步骤2:表面法线的三通道输出 — 解码器输出通道设置为3,对应于法线矢量的xyz分量。
- 步骤3:损失函数(余弦相似度) — 使用L1损失和余弦相似度的组合来比较预测的法线向量与地面真实法线。
代码实现
以下是表面法线估计的代码实现,包括模型加载、图像预处理和可视化。
# 模型加载
TASK = 'normal'
VERSION = 'sapiens_0.3b'
model_path = get_model_path(TASK, VERSION)
print(model_path)
# 图像法线估计
def get_normal(image, normal_model, input_shape=(3, 1024, 768), device="cuda"):
# Preprocess the image
img = preprocess_image(image, input_shape)
# Run the model
with torch.no_grad():
result = normal_model(img.to(device))
# Post-process the output
normal_map = post_process_normal(result, (image.shape[0], image.shape[1]))
# Visualize the normal map
normal_image = visualize_normal(normal_map)
return normal_image, normal_map
def preprocess_image(image, input_shape):
img = cv2.resize(image, (input_shape[2], input_shape[1]), interpolation=cv2.INTER_LINEAR).transpose(2, 0, 1)
img = torch.from_numpy(img)
img = img[[2, 1, 0], ...].float()
mean = torch.tensor([123.5, 116.5, 103.5]).view(-1, 1, 1)
std = torch.tensor([58.5, 57.0, 57.5]).view(-1, 1, 1)
img = (img - mean) / std
return img.unsqueeze(0)
def post_process_normal(result, original_shape):
# Check the dimensionality of the result
if result.dim() == 3:
result = result.unsqueeze(0)
elif result.dim() == 4:
pass
else:
raise ValueError(f"Unexpected result dimension: {result.dim()}")
# Ensure we're interpolating to the correct dimensions
seg_logits = F.interpolate(result, size=original_shape, mode="bilinear", align_corners=False).squeeze(0)
normal_map = seg_logits.float().cpu().numpy().transpose(1, 2, 0) # H x W x 3
return normal_map
def visualize_normal(normal_map):
normal_map_norm = np.linalg.norm(normal_map, axis=-1, keepdims=True)
normal_map_normalized = normal_map / (normal_map_norm + 1e-5) # Add a small epsilon to avoid division by zero
# Convert to 0-255 range and BGR format for visualization
normal_map_vis = ((normal_map_normalized + 1) / 2 * 255).astype(np.uint8)
normal_map_vis = normal_map_vis[:, :, ::-1] # RGB to BGR
return normal_map_vis
def load_normal_model(checkpoint, use_torchscript=False):
if use_torchscript:
return torch.jit.load(checkpoint)
else:
model = torch.export.load(checkpoint).module()
model = model.to("cuda")
model = torch.compile(model, mode="max-autotune", fullgraph=True)
return model
结束语
尽管Meta Sapiens在理解与人类相关的任务方面表现出色,但它在更复杂的场景中也面临挑战。例如,当多个人站得很近(拥挤)或个人摆出不寻常或罕见的姿势时,模型很难准确估计姿势并分割身体部位。此外,严重的遮挡——当身体的某些部位被遮挡时——进一步增加了模型提供精确结果的能力。
Meta Sapiens代表了以人为本的人工智能向前迈出的重要一步,在姿势估计、分割、深度预测和表面法线估计方面提供了强大的功能。然而,与许多模型一样,它仍然存在局限性,特别是在拥挤或高度复杂的场景中。随着人工智能的不断发展,像Sapiens这样的模型的未来迭代有望解决这些挑战,使我们更接近更准确、更可靠的以人为本的应用程序。
原文链接:Meta Sapiens 人体AI模型