机器人运动学仿真软件:ROS (Robot Operating System)_(3).ROS节点与通信

ROS节点与通信

在上一节中,我们介绍了ROS的基本概念和环境搭建。本节将重点讨论ROS节点与通信机制,这是ROS中最核心的部分之一。理解节点和通信机制对于开发复杂的机器人应用至关重要。

在这里插入图片描述

1. ROS节点

1.1 节点的概念

在ROS中,节点(Node)是执行特定功能的最小进程单元。每个节点都是一个独立的进程,可以执行不同的任务,例如传感器数据处理、路径规划、运动控制等。ROS节点通过ROS通信机制与其他节点进行交互,实现数据的共享和协同工作。

1.2 创建节点

创建一个ROS节点非常简单,可以使用多种编程语言,如C++、Python等。以下是一个使用Python创建节点的示例:


#!/code>

# 导入ROS的Python库

import rospy



# 导入标准的消息类型

from std_msgs.msg import String



def talker():

    # 初始化节点

    rospy.init_node('talker', anonymous=True)

    

    # 创建一个发布者,发布主题为'chatter',消息类型为String

    pub = rospy.Publisher('chatter', String, queue_size=10)

    

    # 设置发布频率

    rate = rospy.Rate(1)  # 1Hz

    

    # 主循环

    while not rospy.is_shutdown():

        # 创建消息

        message = "Hello, ROS!"

        

        # 发布消息

        pub.publish(message)

        

        # 打印消息

        rospy.loginfo(message)

        

        # 等待一段时间

        rate.sleep()



if __name__ == '__main__':

    try:

        talker()

    except rospy.ROSInterruptException:

        pass

1.3 节点的初始化

在创建节点时,需要调用rospy.init_node函数进行初始化。该函数的主要参数包括:

  • node_name:节点的名称,必须是唯一的。

  • anonymous:是否为节点生成一个唯一的名称。如果设置为True,则每个节点实例都会有一个不同的名称。

1.4 节点的生命周期

节点的生命周期包括初始化、运行和关闭三个阶段。在初始化阶段,节点会注册到ROS的主节点(Master),并在运行阶段执行特定的任务。当节点接收到关闭信号时,会进入关闭阶段,释放资源并退出。

1.5 节点的命名

节点的命名需要遵循一定的规则,确保名称的唯一性和可读性。节点名称可以包含字母、数字和下划线,但不能包含空格或其他特殊字符。例如,my_robot_node 是一个有效的节点名称,而 my robot node 则无效。

2. ROS通信

2.1 主题通信

主题(Topic)通信是ROS中最常用的通信方式之一。通过主题,节点可以发布和订阅消息,实现数据的实时传输。主题通信是基于发布者-订阅者(Publisher-Subscriber)模式的。

2.1.1 创建发布者

创建发布者需要调用rospy.Publisher函数。以下是一个发布者节点的示例:


# 导入ROS的Python库

import rospy



# 导入标准的消息类型

from std_msgs.msg import String



def talker():

    # 初始化节点

    rospy.init_node('talker', anonymous=True)

    

    # 创建一个发布者,发布主题为'chatter',消息类型为String

    pub = rospy.Publisher('chatter', String, queue_size=10)

    

    # 设置发布频率

    rate = rospy.Rate(1)  # 1Hz

    

    # 主循环

    while not rospy.is_shutdown():

        # 创建消息

        message = "Hello, ROS!"

        

        # 发布消息

        pub.publish(message)

        

        # 打印消息

        rospy.loginfo(message)

        

        # 等待一段时间

        rate.sleep()



if __name__ == '__main__':

    try:

        talker()

    except rospy.ROSInterruptException:

        pass

2.1.2 创建订阅者

创建订阅者需要调用rospy.Subscriber函数。以下是一个订阅者节点的示例:


# 导入ROS的Python库

import rospy



# 导入标准的消息类型

from std_msgs.msg import String



def callback(data):

    # 打印接收到的消息

    rospy.loginfo(rospy.get_caller_id() + " I heard %s", data.data)



def listener():

    # 初始化节点

    rospy.init_node('listener', anonymous=True)

    

    # 创建一个订阅者,订阅主题为'chatter',消息类型为String

    rospy.Subscriber('chatter', String, callback)

    

    # 保持节点运行

    rospy.spin()



if __name__ == '__main__':

    listener()

2.2 服务通信

服务(Service)通信是另一种重要的通信方式,适用于请求-响应(Request-Response)模式。服务通信可以实现节点之间的同步通信。

2.2.1 创建服务

创建服务需要定义服务类型和服务器节点。以下是一个创建服务的示例:


# 导入ROS的Python库

import rospy



# 导入服务类型

from std_srvs.srv import Trigger



def handle_trigger(req):

    # 处理请求

    rospy.loginfo("Trigger request received")

    return (True, "Triggered successfully")



def trigger_server():

    # 初始化节点

    rospy.init_node('trigger_server')

    

    # 创建一个服务,服务名称为'trigger', 服务类型为Trigger

    s = rospy.Service('trigger', Trigger, handle_trigger)

    

    # 保持节点运行

    rospy.loginfo("Trigger service ready to handle requests")

    rospy.spin()



if __name__ == '__main__':

    trigger_server()

2.2.2 调用服务

调用服务需要定义客户端节点。以下是一个调用服务的示例:


# 导入ROS的Python库

import rospy



# 导入服务类型

from std_srvs.srv import Trigger



def trigger_client():

    # 初始化节点

    rospy.init_node('trigger_client')

    

    # 等待服务可用

    rospy.wait_for_service('trigger')

    

    # 创建服务代理

    trigger = rospy.ServiceProxy('trigger', Trigger)

    

    # 调用服务

    try:

        resp = trigger()

        rospy.loginfo("Trigger response: %s", resp.message)

    except rospy.ServiceException as e:

        rospy.logerr("Service call failed: %s", e)



if __name__ == '__main__':

    trigger_client()

2.3 参数服务器

参数服务器(Parameter Server)是ROS中用于存储和共享参数的全局数据库。节点可以通过参数服务器读取和设置参数,实现配置的灵活管理。

2.3.1 设置参数

设置参数可以使用rospy.set_param函数。以下是一个设置参数的示例:


# 导入ROS的Python库

import rospy



def set_param_example():

    # 初始化节点

    rospy.init_node('set_param_node')

    

    # 设置参数

    rospy.set_param('my_param', 10)

    rospy.loginfo("Parameter 'my_param' set to 10")



if __name__ == '__main__':

    set_param_example()

2.3.2 读取参数

读取参数可以使用rospy.get_param函数。以下是一个读取参数的示例:


# 导入ROS的Python库

import rospy



def get_param_example():

    # 初始化节点

    rospy.init_node('get_param_node')

    

    # 读取参数

    param_value = rospy.get_param('my_param', 'default_value')

    rospy.loginfo("Parameter 'my_param' value is: %s", param_value)



if __name__ == '__main__':

    get_param_example()

2.4 动态参数服务器

动态参数服务器(Dynamic Reconfigure)允许在运行时动态地调整节点的参数。这在调试和优化机器人应用时非常有用。

2.4.1 创建动态参数服务器

创建动态参数服务器需要使用dynamic_reconfigure包。以下是一个创建动态参数服务器的示例:


# 导入ROS的Python库

import rospy



# 导入动态参数服务器库

from dynamic_reconfigure.server import Server



# 导入自定义的动态参数配置

from my_robot_config.cfg import MyRobotConfig



def callback(config, level):

    # 处理参数变化

    rospy.loginfo("Reconfigure Request: {int_param}, {double_param}, {str_param}".format(**config))

    return config



if __name__ == '__main__':

    # 初始化节点

    rospy.init_node('dynamic_reconfigure_node', anonymous=True)

    

    # 创建动态参数服务器

    srv = Server(MyRobotConfig, callback)

    

    # 保持节点运行

    rospy.spin()

2.4.2 客户端动态参数调整

客户端可以通过dynamic_reconfigure包调整服务器的参数。以下是一个客户端动态参数调整的示例:


# 导入ROS的Python库

import rospy



# 导入动态参数客户端库

from dynamic_reconfigure.client import Client



def dynamic_reconfigure_client():

    # 初始化节点

    rospy.init_node('dynamic_reconfigure_client')

    

    # 创建动态参数客户端

    client = Client('dynamic_reconfigure_node')

    

    # 设置参数

    client.update_configuration({"int_param": 5, "double_param": 3.14, "str_param": "Hello, Dynamic Reconfigure"})



if __name__ == '__main__':

    dynamic_reconfigure_client()

2.5 节点间的通信

节点间的通信可以通过主题、服务和参数服务器实现。不同的通信方式适用于不同的场景,选择合适的通信方式可以提高系统的效率和可靠性。

2.5.1 多节点主题通信

多节点可以通过同一个主题进行通信。以下是一个多节点主题通信的示例:


# 导入ROS的Python库

import rospy



# 导入标准的消息类型

from std_msgs.msg import String



def talker():

    # 初始化节点

    rospy.init_node('talker', anonymous=True)

    

    # 创建一个发布者,发布主题为'chatter',消息类型为String

    pub = rospy.Publisher('chatter', String, queue_size=10)

    

    # 设置发布频率

    rate = rospy.Rate(1)  # 1Hz

    

    # 主循环

    while not rospy.is_shutdown():

        # 创建消息

        message = "Hello, ROS from Talker 1!"

        

        # 发布消息

        pub.publish(message)

        

        # 打印消息

        rospy.loginfo(message)

        

        # 等待一段时间

        rate.sleep()



if __name__ == '__main__':

    try:

        talker()

    except rospy.ROSInterruptException:

        pass


# 导入ROS的Python库

import rospy



# 导入标准的消息类型

from std_msgs.msg import String



def callback(data):

    # 打印接收到的消息

    rospy.loginfo(rospy.get_caller_id() + " I heard %s", data.data)



def listener1():

    # 初始化节点

    rospy.init_node('listener1', anonymous=True)

    

    # 创建一个订阅者,订阅主题为'chatter',消息类型为String

    rospy.Subscriber('chatter', String, callback)

    

    # 保持节点运行

    rospy.spin()



if __name__ == '__main__':

    listener1()


# 导入ROS的Python库

import rospy



# 导入标准的消息类型

from std_msgs.msg import String



def callback(data):

    # 打印接收到的消息

    rospy.loginfo(rospy.get_caller_id() + " I heard %s", data.data)



def listener2():

    # 初始化节点

    rospy.init_node('listener2', anonymous=True)

    

    # 创建一个订阅者,订阅主题为'chatter',消息类型为String

    rospy.Subscriber('chatter', String, callback)

    

    # 保持节点运行

    rospy.spin()



if __name__ == '__main__':

    listener2()

2.5.2 多节点服务通信

多节点可以通过同一个服务进行通信。以下是一个多节点服务通信的示例:


# 导入ROS的Python库

import rospy



# 导入服务类型

from std_srvs.srv import Trigger



def handle_trigger(req):

    # 处理请求

    rospy.loginfo("Trigger request received in Server 1")

    return (True, "Triggered successfully in Server 1")



def trigger_server1():

    # 初始化节点

    rospy.init_node('trigger_server1')

    

    # 创建一个服务,服务名称为'trigger', 服务类型为Trigger

    s = rospy.Service('trigger1', Trigger, handle_trigger)

    

    # 保持节点运行

    rospy.loginfo("Trigger service 1 ready to handle requests")

    rospy.spin()



if __name__ == '__main__':

    trigger_server1()


# 导入ROS的Python库

import rospy



# 导入服务类型

from std_srvs.srv import Trigger



def handle_trigger(req):

    # 处理请求

    rospy.loginfo("Trigger request received in Server 2")

    return (True, "Triggered successfully in Server 2")



def trigger_server2():

    # 初始化节点

    rospy.init_node('trigger_server2')

    

    # 创建一个服务,服务名称为'trigger', 服务类型为Trigger

    s = rospy.Service('trigger2', Trigger, handle_trigger)

    

    # 保持节点运行

    rospy.loginfo("Trigger service 2 ready to handle requests")

    rospy.spin()



if __name__ == '__main__':

    trigger_server2()


# 导入ROS的Python库

import rospy



# 导入服务类型

from std_srvs.srv import Trigger



def trigger_client1():

    # 初始化节点

    rospy.init_node('trigger_client1')

    

    # 等待服务可用

    rospy.wait_for_service('trigger1')

    

    # 创建服务代理

    trigger = rospy.ServiceProxy('trigger1', Trigger)

    

    # 调用服务

    try:

        resp = trigger()

        rospy.loginfo("Trigger response 1: %s", resp.message)

    except rospy.ServiceException as e:

        rospy.logerr("Service call failed: %s", e)



if __name__ == '__main__':

    trigger_client1()


# 导入ROS的Python库

import rospy



# 导入服务类型

from std_srvs.srv import Trigger



def trigger_client2():

    # 初始化节点

    rospy.init_node('trigger_client2')

    

    # 等待服务可用

    rospy.wait_for_service('trigger2')

    

    # 创建服务代理

    trigger = rospy.ServiceProxy('trigger2', Trigger)

    

    # 调用服务

    try:

        resp = trigger()

        rospy.loginfo("Trigger response 2: %s", resp.message)

    except rospy.ServiceException as e:

        rospy.logerr("Service call failed: %s", e)



if __name__ == '__main__':

    trigger_client2()

2.6 节点图

节点图(Graph)是ROS中用于可视化节点及其通信关系的工具。通过节点图,可以清晰地看到各个节点之间的连接和消息流动。

2.6.1 使用rqt_graph工具

rqt_graph 是一个常用的ROS工具,可以用来查看节点图。启动rqt_graph的方法如下:


rosrun rqt_graph rqt_graph

2.6.2 解读节点图

节点图中,每个节点用一个矩形表示,主题用箭头表示。箭头的起点是发布者节点,终点是订阅者节点。服务则用双向箭头表示,连接服务提供者和客户端节点。

3. 实战演练

3.1 任务描述

假设有一个场景,你需要开发一个简单的机器人控制系统。该系统包括一个发布者节点和两个订阅者节点。发布者节点用于发布机器人的运动状态,订阅者节点用于接收并处理这些状态信息。

3.2 代码实现

3.2.1 发布者节点

# 导入ROS的Python库

import rospy



# 导入自定义的消息类型

from my_robot_msgs.msg import RobotState



def talker():

    # 初始化节点

    rospy.init_node('robot_talker', anonymous=True)

    

    # 创建一个发布者,发布主题为'robot_state',消息类型为RobotState

    pub = rospy.Publisher('robot_state', RobotState, queue_size=10)

    

    # 设置发布频率

    rate = rospy.Rate(1)  # 1Hz

    

    # 主循环

    while not rospy.is_shutdown():

        # 创建消息

        state = RobotState()

        state.x = 1.0

        state.y = 2.0

        state.theta = 0.5

        state.linear_velocity = 0.3

        state.angular_velocity = 0.2

        

        # 发布消息

        pub.publish(state)

        

        # 打印消息

        rospy.loginfo("Published robot state: %s, %s, %s, %s, %s", state.x, state.y, state.theta, state.linear_velocity, state.angular_velocity)

        

        # 等待一段时间

        rate.sleep()



if __name__ == '__main__':

    try:

        talker()

    except rospy.ROSInterruptException:

        pass

3.2.2 订阅者节点1

# 导入ROS的Python库

import rospy



# 导入自定义的消息类型

from my_robot_msgs.msg import RobotState



def callback(data):

    # 打印接收到的消息

    rospy.loginfo("Listener 1 received robot state: %s, %s, %s, %s, %s", data.x, data.y, data.theta, data.linear_velocity, data.angular_velocity)



def listener1():

    # 初始化节点

    rospy.init_node('robot_listener1', anonymous=True)

    

    # 创建一个订阅者,订阅主题为'robot_state',消息类型为RobotState

    rospy.Subscriber('robot_state', RobotState, callback)

    

    # 保持节点运行

    rospy.spin()



if __name__ == '__main__':

    listener1()

3.2.3 订阅者节点2

# 导入ROS的Python库

import rospy



# 导入自定义的消息类型

from my_robot_msgs.msg import RobotState



def callback(data):

    # 打印接收到的消息

    rospy.loginfo("Listener 2 received robot state: %s, %s, %s, %s, %s", data.x, data.y, data.theta, data.linear_velocity, data.angular_velocity)



def listener2():

    # 初始化节点

    rospy.init_node('robot_listener2', anonymous=True)

    

    # 创建一个订阅者,订阅主题为'robot_state',消息类型为RobotState

    rospy.Subscriber('robot_state', RobotState, callback)

    

    # 保持节点运行

    rospy.spin()



if __name__ == '__main__':

    listener2()

3.3 运行和测试

3.3.1 启动ROS核心

在开始运行节点之前,需要先启动ROS核心(Master):


roscore

3.3.2 编译和运行节点

确保你的ROS环境已经配置好,并且包含必要的消息类型和依赖。编译你的ROS包:


cd ~/catkin_ws

catkin_make

source devel/setup.bash

启动发布者节点:


rosrun my_robot_package robot_talker.py

启动订阅者节点1和订阅者节点2:


rosrun my_robot_package robot_listener1.py

rosrun my_robot_package robot_listener2.py

3.3.3 查看节点图

使用 rqt_graph 工具查看节点图,以确保所有节点和通信都按预期工作:


rosrun rqt_graph rqt_graph

rqt_graph 界面中,你可以看到 robot_talker 节点通过 robot_state 主题向 robot_listener1robot_listener2 节点发布消息。这表明你的节点和通信机制已经正确配置。

3.4 服务通信示例

假设你还需要在机器人控制系统中添加一个服务,用于控制机器人启动和停止。以下是一个服务通信的示例。

3.4.1 创建服务提供者节点

# 导入ROS的Python库

import rospy



# 导入服务类型

from std_srvs.srv import Trigger



def handle_trigger(req):

    # 处理请求

    rospy.loginfo("Trigger request received")

    return (True, "Robot started/stopped successfully")



def trigger_server():

    # 初始化节点

    rospy.init_node('robot_trigger_server')

    

    # 创建一个服务,服务名称为'robot_trigger', 服务类型为Trigger

    s = rospy.Service('robot_trigger', Trigger, handle_trigger)

    

    # 保持节点运行

    rospy.loginfo("Robot trigger service ready to handle requests")

    rospy.spin()



if __name__ == '__main__':

    trigger_server()

3.4.2 创建服务客户端节点

# 导入ROS的Python库

import rospy



# 导入服务类型

from std_srvs.srv import Trigger



def trigger_client():

    # 初始化节点

    rospy.init_node('robot_trigger_client')

    

    # 等待服务可用

    rospy.wait_for_service('robot_trigger')

    

    # 创建服务代理

    trigger = rospy.ServiceProxy('robot_trigger', Trigger)

    

    # 调用服务

    try:

        resp = trigger()

        rospy.loginfo("Trigger response: %s", resp.message)

    except rospy.ServiceException as e:

        rospy.logerr("Service call failed: %s", e)



if __name__ == '__main__':

    trigger_client()

3.4.3 运行和测试

启动服务提供者节点:


rosrun my_robot_package robot_trigger_server.py

启动服务客户端节点:


rosrun my_robot_package robot_trigger_client.py

在终端中,你应该能看到服务客户端成功调用服务提供者并接收到响应的输出。

3.5 参数服务器示例

假设你需要在机器人控制系统中设置一些参数,例如机器人的最大速度和最小速度。以下是一个参数服务器的示例。

3.5.1 设置参数

# 导入ROS的Python库

import rospy



def set_param_example():

    # 初始化节点

    rospy.init_node('set_param_node')

    

    # 设置参数

    rospy.set_param('max_linear_velocity', 1.0)

    rospy.set_param('min_linear_velocity', 0.1)

    rospy.set_param('max_angular_velocity', 0.5)

    rospy.set_param('min_angular_velocity', 0.05)

    

    # 打印设置的参数

    rospy.loginfo("Parameters set: max_linear_velocity=%s, min_linear_velocity=%s, max_angular_velocity=%s, min_angular_velocity=%s", 

                  rospy.get_param('max_linear_velocity'), 

                  rospy.get_param('min_linear_velocity'), 

                  rospy.get_param('max_angular_velocity'), 

                  rospy.get_param('min_angular_velocity'))



if __name__ == '__main__':

    set_param_example()

3.5.2 读取参数

# 导入ROS的Python库

import rospy



# 导入自定义的消息类型

from my_robot_msgs.msg import RobotState



def callback(data):

    # 打印接收到的消息

    rospy.loginfo("Listener received robot state: %s, %s, %s, %s, %s", data.x, data.y, data.theta, data.linear_velocity, data.angular_velocity)

    

    # 读取参数

    max_linear_velocity = rospy.get_param('max_linear_velocity', 1.0)

    min_linear_velocity = rospy.get_param('min_linear_velocity', 0.1)

    max_angular_velocity = rospy.get_param('max_angular_velocity', 0.5)

    min_angular_velocity = rospy.get_param('min_angular_velocity', 0.05)

    

    # 检查并调整速度

    if data.linear_velocity > max_linear_velocity:

        data.linear_velocity = max_linear_velocity

    if data.linear_velocity < min_linear_velocity:

        data.linear_velocity = min_linear_velocity

    if data.angular_velocity > max_angular_velocity:

        data.angular_velocity = max_angular_velocity

    if data.angular_velocity < min_angular_velocity:

        data.angular_velocity = min_angular_velocity

    

    # 发布调整后的速度

    pub.publish(data)



def listener():

    # 初始化节点

    rospy.init_node('robot_listener_with_params', anonymous=True)

    

    # 创建一个发布者,发布主题为'robot_state_adjusted',消息类型为RobotState

    global pub

    pub = rospy.Publisher('robot_state_adjusted', RobotState, queue_size=10)

    

    # 创建一个订阅者,订阅主题为'robot_state',消息类型为RobotState

    rospy.Subscriber('robot_state', RobotState, callback)

    

    # 保持节点运行

    rospy.spin()



if __name__ == '__main__':

    listener()

3.5.3 运行和测试

启动设置参数的节点:


rosrun my_robot_package set_param_example.py

启动发布者节点:


rosrun my_robot_package robot_talker.py

启动带有参数读取和调整的订阅者节点:


rosrun my_robot_package robot_listener_with_params.py

在终端中,你应该能看到订阅者节点读取参数并调整发布者节点发布的速度值。

3.6 动态参数服务器示例

假设你希望在运行时动态调整机器人的最大速度和最小速度。以下是一个动态参数服务器的示例。

3.6.1 创建动态参数服务器

# 导入ROS的Python库

import rospy



# 导入动态参数服务器库

from dynamic_reconfigure.server import Server



# 导入自定义的动态参数配置

from my_robot_config.cfg import MyRobotConfig



def callback(config, level):

    # 处理参数变化

    rospy.loginfo("Reconfigure Request: {max_linear_velocity}, {min_linear_velocity}, {max_angular_velocity}, {min_angular_velocity}".format(**config))

    return config



if __name__ == '__main__':

    # 初始化节点

    rospy.init_node('robot_dynamic_reconfigure', anonymous=True)

    

    # 创建动态参数服务器

    srv = Server(MyRobotConfig, callback)

    

    # 保持节点运行

    rospy.spin()

3.6.2 客户端动态参数调整

# 导入ROS的Python库

import rospy



# 导入动态参数客户端库

from dynamic_reconfigure.client import Client



def dynamic_reconfigure_client():

    # 初始化节点

    rospy.init_node('robot_dynamic_reconfigure_client')

    

    # 创建动态参数客户端

    client = Client('robot_dynamic_reconfigure')

    

    # 设置参数

    client.update_configuration({"max_linear_velocity": 1.5, "min_linear_velocity": 0.05, "max_angular_velocity": 0.6, "min_angular_velocity": 0.01})



if __name__ == '__main__':

    dynamic_reconfigure_client()

3.6.3 运行和测试

启动动态参数服务器节点:


rosrun my_robot_package robot_dynamic_reconfigure.py

启动动态参数客户端节点:


rosrun my_robot_package robot_dynamic_reconfigure_client.py

在终端中,你应该能看到动态参数服务器接收到客户端的参数调整请求,并打印出新的参数值。

4. 总结

通过本节的学习,你应该对ROS节点和通信机制有了更深入的理解。主题通信、服务通信和参数服务器是ROS中常用的三种通信方式,每种方式都有其特定的应用场景和优势。掌握这些通信机制,可以帮助你更好地开发和调试复杂的机器人应用。

4.1 重点回顾

  • 节点的概念:节点是ROS中执行特定功能的最小进程单元。

  • 节点的创建:使用 rospy.init_node 初始化节点,使用 rospy.Publisherrospy.Subscriber 创建发布者和订阅者。

  • 主题通信:适用于实时数据传输,使用发布者-订阅者模式。

  • 服务通信:适用于同步通信,使用请求-响应模式。

  • 参数服务器:用于存储和共享参数,实现配置的灵活管理。

  • 动态参数服务器:允许在运行时动态调整参数,适用于调试和优化。

4.2 进一步学习

  • ROS消息类型:深入了解ROS中的各种消息类型及其使用方法。

  • ROS服务类型:学习如何定义和使用自定义的服务类型。

  • ROS节点图:进一步探索 rqt_graph 工具的高级功能,如保存节点图和分析通信效率。

  • ROS调试工具:学习使用 rostopicrosservicerosparam 等命令行工具进行调试。

希望本节内容对你有所帮助,祝你在ROS开发中取得更大的进展!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kkchenjj

你的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值