PCL在工业机器人中的应用
在工业机器人领域,PCL(Point Cloud Library)被广泛应用于各种视觉任务,如物体识别、定位、路径规划和避障等。本节将详细介绍PCL在工业机器人中的具体应用,并通过实际代码示例来展示这些应用的实现过程。
1. 物体识别
物体识别是工业机器人中的一项重要任务,它可以帮助机器人识别出工作环境中的特定物体,从而进行精确的操作。PCL提供了多种算法来实现物体识别,包括基于特征的匹配、基于模型的方法等。
1.1 基于特征的物体识别
基于特征的物体识别方法通过提取点云中的特征(如法线、曲率、SIFT、SURF等)来匹配已知物体的特征模型。PCL中常用的特征提取和匹配算法包括FPFH(Fast Point Feature Histograms)和SHOT(Signature of Histograms of Orientations)。
1.1.1 FPFH特征提取
FPFH特征是一种描述点云局部几何结构的特征,适用于物体识别任务。以下是一个基于FPFH特征提取的物体识别示例代码:
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <pcl/features/normal_3d.h>
#include <pcl/features/fpfh.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/io/pcd_io.h>
#include <pcl/kdtree/kdtree_flann.h>
#include <pcl/filters/passthrough.h>
int main (int argc, char** argv)
{
// 读取点云数据
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
pcl::io::loadPCDFile<pcl::PointXYZ> ("object.pcd", *cloud);
// 创建法线估计对象
pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne;
pcl::PointCloud<pcl::Normal>::Ptr cloud_normals (new pcl::PointCloud<pcl::Normal>);
ne.setInputCloud (cloud);
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
ne.setSearchMethod (tree);
ne.setKSearch (10); // 设置搜索半径
ne.compute (*cloud_normals);
// 创建FPFH特征估计对象
pcl::FPFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::FPFHSignature33> fpfh;
fpfh.setInputCloud (cloud);
fpfh.setInputNormals (cloud_normals);
fpfh.setSearchMethod (tree);
pcl::PointCloud<pcl::FPFHSignature33>::Ptr fpfhs (new pcl::PointCloud<pcl::FPFHSignature33>);
fpfh.setRadiusSearch (0.05); // 设置搜索半径
fpfh.compute (*fpfhs);
// 可视化点云和法线
pcl::visualization::PCLVisualizer viewer ("3D Viewer");
viewer.setBackgroundColor (0, 0, 0);
viewer.addPointCloud<pcl::PointXYZ> (cloud, "sample cloud");
viewer.addPointCloudNormals<pcl::PointXYZ, pcl::Normal> (cloud, cloud_normals, 10, 0.05, "normals");
while (!viewer.wasStopped ())
{
viewer.spinOnce ();
}
return 0;
}
在这个示例中,我们首先读取了一个点云文件 object.pcd
,然后使用 NormalEstimation
类来估计点云的法线。接着,我们使用 FPFHEstimation
类来计算FPFH特征。最后,我们使用 PCLVisualizer
类来可视化点云和法线。
1.2 基于模型的物体识别
基于模型的物体识别方法通过将点云与已知的物体模型进行匹配来识别物体。PCL中常用的模型匹配算法包括SAC-IA(Sample Consensus Initial Alignment)和ICP(Iterative Closest Point)。
1.2.1 SAC-IA模型匹配
SAC-IA算法是一种基于样本一致性的初始对齐方法,适用于物体识别和姿态估计。以下是一个基于SAC-IA模型匹配的物体识别示例代码:
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/features/normal_3d.h>
#include <pcl/features/fpfh.h>
#include <pcl/registration/sample_consensus_prerejective.h>
#include <pcl/visualization/pcl_visualizer.h>
int main (int argc, char** argv)
{
// 读取目标点云和模型点云
pcl::PointCloud<pcl::PointXYZ>::Ptr target (new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointXYZ>::Ptr model (new pcl::PointCloud<pcl::PointXYZ>);
pcl::io::loadPCDFile<pcl::PointXYZ> ("target.pcd", *target);
pcl::io::loadPCDFile<pcl::PointXYZ> ("model.pcd", *model);
// 创建法线估计对象
pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne;
pcl::PointCloud<pcl::Normal>::Ptr target_normals (new pcl::PointCloud<pcl::Normal>);
pcl::PointCloud<pcl::Normal>::Ptr model_normals (new pcl::PointCloud<pcl::Normal>);
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
ne.setInputCloud (target);
ne.setSearchMethod (tree);
ne.setKSearch (10);
ne.compute (*target_normals);
ne.setInputCloud (model);
ne.setSearchMethod (tree);
ne.setKSearch (10);
ne.compute (*model_normals);
// 创建FPFH特征估计对象
pcl::FPFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::FPFHSignature33> fpfh;
pcl::PointCloud<pcl::FPFHSignature33>::Ptr target_fpfhs (new pcl::PointCloud<pcl::FPFHSignature33>);
pcl::PointCloud<pcl::FPFHSignature33>::Ptr model_fpfhs (new pcl::PointCloud<pcl::FPFHSignature33>);
fpfh.setInputCloud (target);
fpfh.setInputNormals (target_normals);
fpfh.setSearchMethod (tree);
fpfh.setRadiusSearch (0.05);
fpfh.compute (*target_fpfhs);
fpfh.setInputCloud (model);
fpfh.setInputNormals (model_normals);
fpfh.setSearchMethod (tree);
fpfh.setRadiusSearch (0.05);
fpfh.compute (*model_fpfhs);
// 创建SAC-IA对齐对象
pcl::SampleConsensusPrerejective<pcl::PointXYZ, pcl::PointXYZ, pcl::FPFHSignature33> align;
align.setInputSource (model);
align.setSourceFeatures (model_fpfhs);
align.setInputTarget (target);
align.setTargetFeatures (target_fpfhs);
align.setMaximumIterations (50000); // 设置最大迭代次数
align.setNumberOfSamples (3); // 设置样本数量
align.setCorrespondenceRandomness (5); // 设置随机性
align.setSimilarityThreshold (0.9f); // 设置相似性阈值
align.setMaxCorrespondenceDistance (2.5f * 0.005f); // 设置最大对应距离
align.setInlierFraction (0.25f); // 设置内点比例
// 创建输出点云对象
pcl::PointCloud<pcl::PointXYZ> aligned_model;
align.align (aligned_model);
// 可视化结果
if (align.hasConverged ())
{
std::cout << "SAC-IA has converged, score is " << align.getFitnessScore (0.0) << std::endl;
pcl::visualization::PCLVisualizer viewer ("3D Viewer");
viewer.setBackgroundColor (0, 0, 0);
viewer.addPointCloud<pcl::PointXYZ> (target, "target cloud");
viewer.addPointCloud<pcl::PointXYZ> (aligned_model, "aligned model cloud");
while (!viewer.wasStopped ())
{
viewer.spinOnce ();
}
}
else
{
std::cout << "SAC-IA did not converge." << std::endl;
}
return 0;
}
在这个示例中,我们首先读取了目标点云和模型点云,然后分别估计了它们的法线和FPFH特征。接着,我们使用 SampleConsensusPrerejective
类来对齐模型点云和目标点云。最后,我们使用 PCLVisualizer
类来可视化对齐后的结果。
2. 物体定位
物体定位是工业机器人中的一项关键任务,它可以帮助机器人确定物体在工作环境中的具体位置。PCL提供了多种算法来实现物体定位,包括ICP(Iterative Closest Point)和NDT(Normal Distributions Transform)。
2.1 ICP算法
ICP算法是一种迭代最近点算法,常用于点云的配准和定位。以下是一个基于ICP算法的物体定位示例代码:
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/registration/icp.h>
#include <pcl/visualization/pcl_visualizer.h>
int main (int argc, char** argv)
{
// 读取目标点云和模型点云
pcl::PointCloud<pcl::PointXYZ>::Ptr target (new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointXYZ>::Ptr model (new pcl::PointCloud<pcl::PointXYZ>);
pcl::io::loadPCDFile<pcl::PointXYZ> ("target.pcd", *target);
pcl::io::loadPCDFile<pcl::PointXYZ> ("model.pcd", *model);
// 创建ICP配准对象
pcl::IterativeClosestPoint<pcl::PointXYZ, pcl::PointXYZ> icp;
icp.setInputSource (model);
icp.setInputTarget (target);
// 创建输出点云对象
pcl::PointCloud<pcl::PointXYZ> aligned_model;
icp.align (aligned_model);
// 可视化结果
if (icp.hasConverged ())
{
std::cout << "ICP has converged, score is " << icp.getFitnessScore (0.0) << std::endl;
pcl::visualization::PCLVisualizer viewer ("3D Viewer");
viewer.setBackgroundColor (0, 0, 0);
viewer.addPointCloud<pcl::PointXYZ> (target, "target cloud");
viewer.addPointCloud<pcl::PointXYZ> (aligned_model, "aligned model cloud");
while (!viewer.wasStopped ())
{
viewer.spinOnce ();
}
}
else
{
std::cout << "ICP did not converge." << std::endl;
}
return 0;
}
在这个示例中,我们首先读取了目标点云和模型点云,然后使用 IterativeClosestPoint
类来配准模型点云和目标点云。最后,我们使用 PCLVisualizer
类来可视化对齐后的结果。
2.2 NDT算法
NDT算法是一种基于正态分布变换的配准方法,适用于大范围和高精度的点云配准。以下是一个基于NDT算法的物体定位示例代码:
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/registration/ndt.h>
#include <pcl/visualization/pcl_visualizer.h>
int main (int argc, char** argv)
{
// 读取目标点云和模型点云
pcl::PointCloud<pcl::PointXYZ>::Ptr target (new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointXYZ>::Ptr model (new pcl::PointCloud<pcl::PointXYZ>);
pcl::io::loadPCDFile<pcl::PointXYZ> ("target.pcd", *target);
pcl::io::loadPCDFile<pcl::PointXYZ> ("model.pcd", *model);
// 创建NDT配准对象
pcl::NormalDistributionsTransform<pcl::PointXYZ, pcl::PointXYZ> ndt;
ndt.setInputSource (model);
ndt.setInputTarget (target);
ndt.setResolution (1.0); // 设置分辨率
ndt.setMaximumIterations (35); // 设置最大迭代次数
ndt.setTransformationEpsilon (0.01); // 设置变换收敛阈值
// 创建输出点云对象
pcl::PointCloud<pcl::PointXYZ> aligned_model;
Eigen::Matrix4f init_guess = Eigen::Matrix4f::Identity ();
ndt.align (aligned_model, init_guess);
// 可视化结果
if (ndt.hasConverged ())
{
std::cout << "NDT has converged, score is " << ndt.getFitnessScore (0.0) << std::endl;
pcl::visualization::PCLVisualizer viewer ("3D Viewer");
viewer.setBackgroundColor (0, 0, 0);
viewer.addPointCloud<pcl::PointXYZ> (target, "target cloud");
viewer.addPointCloud<pcl::PointXYZ> (aligned_model, "aligned model cloud");
while (!viewer.wasStopped ())
{
viewer.spinOnce ();
}
}
else
{
std::cout << "NDT did not converge." << std::endl;
}
return 0;
}
在这个示例中,我们首先读取了目标点云和模型点云,然后使用 NormalDistributionsTransform
类来配准模型点云和目标点云。最后,我们使用 PCLVisualizer
类来可视化对齐后的结果。
3. 路径规划
路径规划是工业机器人中的另一项重要任务,它可以帮助机器人在复杂环境中规划出一条可行的路径。PCL可以用于环境感知和路径规划中的点云处理,例如通过点云滤波和分割来生成环境的自由空间。
3.1 点云滤波
点云滤波可以去除点云中的噪声和异常点,从而提高路径规划的准确性。PCL中常用的滤波算法包括体素网格滤波和统计滤波。
3.1.1 体素网格滤波
体素网格滤波是一种基于体素化的方法,适用于去除点云中的密集噪声。以下是一个体素网格滤波的示例代码:
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/visualization/pcl_visualizer.h>
int main (int argc, char** argv)
{
// 读取点云数据
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
pcl::io::loadPCDFile<pcl::PointXYZ> ("environment.pcd", *cloud);
// 创建体素网格滤波对象
pcl::VoxelGrid<pcl::PointXYZ> sor;
sor.setInputCloud (cloud);
sor.setLeafSize (0.01f, 0.01f, 0.01f); // 设置体素大小
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>);
sor.filter (*cloud_filtered);
// 可视化结果
pcl::visualization::PCLVisualizer viewer ("3D Viewer");
viewer.setBackgroundColor (0, 0, 0);
viewer.addPointCloud<pcl::PointXYZ> (cloud, "input cloud");
viewer.addPointCloud<pcl::PointXYZ> (cloud_filtered, "filtered cloud");
while (!viewer.wasStopped ())
{
viewer.spinOnce ();
}
return 0;
}
在这个示例中,我们首先读取了一个点云文件 environment.pcd
,然后使用 VoxelGrid
类来进行体素网格滤波。最后,我们使用 PCLVisualizer
类来可视化滤波前后的点云。
3.1.2 统计滤波
统计滤波是一种基于统计分析的方法,适用于去除点云中的异常点。以下是一个统计滤波的示例代码:
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/filters/statistical_outlier_removal.h>
#include <pcl/visualization/pcl_visualizer.h>
int main (int argc, char** argv)
{
// 读取点云数据
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
pcl::io::loadPCDFile<pcl::PointXYZ> ("environment.pcd", *cloud);
// 创建统计滤波对象
pcl::StatisticalOutlierRemoval<pcl::PointXYZ> sor;
sor.setInputCloud (cloud);
sor.setMeanK (50); // 设置邻域点数
sor.setStddevMulThresh (1.0); // 设置标准差倍数阈值
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>);
sor.filter (*cloud_filtered);
// 可视化结果
pcl::visualization::PCLVisualizer viewer ("3D Viewer");
viewer.setBackgroundColor (0, 0, 0);
viewer.addPointCloud<pcl::PointXYZ> (cloud, "input cloud");
viewer.addPointCloud<pcl::PointXYZ> (cloud_filtered, "filtered cloud");
while (!viewer.wasStopped ())
{
viewer.spinOnce ();
}
return 0;
}
在这个示例中,我们首先读取了一个点云文件 environment.pcd
,然后使用 StatisticalOutlierRemoval
类来进行统计滤波。最后,我们使用 PCLVisualizer
类来可视化滤波前后的点云。
4. 避障
避障是工业机器人中的一项基本任务,它可以帮助机器人在移动过程中避免与环境中的障碍物发生碰撞。PCL可以用于环境感知和障碍物检测,例如通过点云分割和聚类来识别环境中的障碍物。
4.1 点云分割
点云分割可以将点云中的不同对象分开,从而识别出障碍物。PCL中常用的分割算法包括区域生长分割和RANSAC分割。
4.1.1 RANSAC分割
RANSAC分割是一种基于随机样本一致性的分割方法,适用于平面和圆柱等几何形状的分割。以下是一个基于RANSAC分割的避障示例代码:
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/filters/extract_indices.h>
#include <pcl/visualization/pcl_visualizer.h>
int main (int argc, char** argv)
{
// 读取点云数据
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
pcl::io::loadPCDFile<pcl::PointXYZ> ("environment.pcd", *cloud);
// 创建RANSAC分割对象
pcl::SACSegmentation<pcl::PointXYZ> seg;
seg.setOptimizeCoefficients (true);
seg.setModelType (pcl::SACMODEL_PLANE); // 设置模型类型为平面
seg.setMethodType (pcl::SAC_RANSAC); // 设置分割方法为RANSAC
seg.setDistanceThreshold (0.01); // 设置距离阈值
// 创建模型系数和索引数组
pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
// 执行分割
seg.setInputCloud (cloud);
seg.segment (*inliers, *coefficients);
if (inliers->indices.size () == 0)
{
std::cout << "Could not estimate a planar model for the given dataset." << std::endl;
return (-1);
}
// 创建提取索引对象
pcl::ExtractIndices<pcl::PointXYZ> extract;
extract.setInputCloud (cloud);
extract.setIndices (inliers);
extract.setNegative (false); // 提取内点
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_plane (new pcl::PointCloud<pcl::PointXYZ>);
extract.filter (*cloud_plane);
// 提取非平面点云(即障碍物)
extract.setNegative (true); // 提取外点
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_obstacles (new pcl::PointCloud<pcl::PointXYZ>);
extract.filter (*cloud_obstacles);
// 可视化结果
pcl::visualization::PCLVisualizer viewer ("3D Viewer");
viewer.setBackgroundColor (0, 0, 0);
pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> plane_color (cloud_plane, 0, 255, 0); // 绿色表示平面
viewer.addPointCloud<pcl::PointXYZ> (cloud_plane, plane_color, "plane cloud");
pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> obstacles_color (cloud_obstacles, 255, 0, 0); // 红色表示障碍物
viewer.addPointCloud<pcl::PointXYZ> (cloud_obstacles, obstacles_color, "obstacles cloud");
while (!viewer.wasStopped ())
{
viewer.spinOnce ();
}
return 0;
}
在这个示例中,我们首先读取了一个点云文件 environment.pcd
,然后使用 SACSegmentation
类来进行RANSAC分割,识别出点云中的平面部分。接着,我们使用 ExtractIndices
类来提取平面点云和非平面点云(即障碍物)。最后,我们使用 PCLVisualizer
类来可视化平面和障碍物。
4.2 点云聚类
点云聚类可以将点云中的不同对象进行分组,从而识别出环境中的障碍物。PCL中常用的聚类算法包括欧几里得聚类和DBSCAN聚类。
4.2.1 欧几里得聚类
欧几里得聚类是一种基于距离的聚类方法,适用于将点云中的不同对象进行分组。以下是一个基于欧几里得聚类的避障示例代码:
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/segmentation/extract_clusters.h>
#include <pcl/filters/passthrough.h>
#include <pcl/visualization/pcl_visualizer.h>
int main (int argc, char** argv)
{
// 读取点云数据
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
pcl::io::loadPCDFile<pcl::PointXYZ> ("environment.pcd", *cloud);
// 创建直通滤波器对象,去除地面点
pcl::PassThrough<pcl::PointXYZ> pass;
pass.setInputCloud (cloud);
pass.setFilterFieldName ("z");
pass.setFilterLimits (0.0, 1.0); // 设置z轴范围
pass.filter (*cloud);
// 创建欧几里得聚类对象
pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
ec.setClusterTolerance (0.02); // 设置聚类容差
ec.setMinClusterSize (100); // 设置最小聚类大小
ec.setMaxClusterSize (25000); // 设置最大聚类大小
std::vector<pcl::PointIndices> cluster_indices;
ec.setInputCloud (cloud);
ec.extract (cluster_indices);
// 可视化聚类结果
pcl::visualization::PCLVisualizer viewer ("3D Viewer");
viewer.setBackgroundColor (0, 0, 0);
int j = 0;
for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it)
{
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);
for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); ++pit)
{
cloud_cluster->points.push_back (cloud->points[*pit]);
}
cloud_cluster->width = cloud_cluster->points.size ();
cloud_cluster->height = 1;
cloud_cluster->is_dense = true;
pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> color (cloud_cluster, 255 - j * 50, j * 50, 255 - j * 50);
std::stringstream ss;
ss << "cluster " << j;
viewer.addPointCloud<pcl::PointXYZ> (cloud_cluster, color, ss.str ());
viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, ss.str ());
j++;
}
while (!viewer.wasStopped ())
{
viewer.spinOnce ();
}
return 0;
}
在这个示例中,我们首先读取了一个点云文件 environment.pcd
,然后使用 PassThrough
类来去除地面点。接着,我们使用 EuclideanClusterExtraction
类来进行欧几里得聚类,识别出环境中的不同障碍物。最后,我们使用 PCLVisualizer
类来可视化聚类结果,每个聚类用不同的颜色表示。
5. 总结
通过上述示例,我们可以看到PCL在工业机器人中的多种应用,包括物体识别、物体定位、路径规划和避障。这些应用不仅提高了机器人的智能水平,还增强了其在复杂环境中的适应能力。PCL提供了丰富的算法和工具,使得这些任务能够高效、准确地完成。无论是基于特征的物体识别,还是基于模型的物体识别,PCL都能提供强大的支持。在路径规划中,点云滤波和分割技术可以有效去除噪声和识别自由空间。在避障中,点云分割和聚类技术则可以帮助机器人识别出环境中的障碍物,确保其安全运行。