20191026CSP-S模拟

T1

踩坑警告!!!

每个点走到的概率不同(可能多种方法走到了同一个点),千万不能直接把所有可能走到的点情况列举出来然后直接根据情况数求概率
昨天T1也挂,今天T1也挂,再挂T1直接不活
在这里插入图片描述
首先一个基础的期望概念:
E ( x ) = ∑ i = 1 n p i ∗ x i E(x)=\sum\limits^n_{i=1}p_i*x_i E(x)=i=1npixi其中 p i p_i pi为概率, x i x_i xi为得到的结果

显然, x x x, y y y两个坐标的变化是相互独立的,因此我们只需考虑一维即可
处理 x 2 x^2 x2,我们发现:
E [ x 2 ] = ∑ i = 0 n C n i ∗ ∑ j = 0 i ( i − 2 j ) 2 2 n E[x^2]=\frac{\sum\limits^n_{i=0}C^i_n*\sum\limits^i_{j=0}(i-2j)^2}{2^n} E[x2]=2ni=0nCnij=0i(i2j)2
其中 2 n 2^n 2n是走 n n n步所有的情况, ∑ i = 0 n C n i \sum\limits^n_{i=0}C^i_n i=0nCni是走 i i i步的方案, ∑ j = 0 i ( i − 2 j ) 2 \sum\limits^i_{j=0}(i-2j)^2 j=0i(i2j)2是每次走得到的结果, i − 2 j i-2j i2j相当于实际走的位移(能走了再走回来吖 Q A Q QAQ QAQ
然后用余弦定理 c 2 = a 2 + b 2 − 2 a b c o s c c^2 = a^2 + b^2 − 2abcosc c2=a2+b22abcosc 可证走 n n n步后的期望就是 n n n
或者:走到 x x x后,下一步一定是 x ± 1 x±1 x±1,根据期望线性性质, E ( x 2 ) = E ( ( x ± 1 ) 2 ) = E ( ( x + 1 ) 2 ) + E ( ( x − 1 ) 2 ) 2 = x 2 + 1 E(x^2)=E((x±1)^2)=\frac{E((x+1)^2)+E((x-1)^2)}{2}=x^2+1 E(x2)=E((x±1)2)=2E((x+1)2)+E((x1)2)=x2+1,所以走 1 1 1步对期望的贡献都是 1 1 1,即走 n n n步后的期望就是 n n n

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值