夕阳红选手复出后的第一题(题目来自落谷):
检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行、每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子。
上面的布局可以用序列2 4 6 1 3 5来描述,第i个数字表示在第i行的相应位置有一个棋子,如下:
行号 1 2 3 4 5 6
列号 2 4 6 1 3 5
这只是跳棋放置的一个解。请编一个程序找出所有跳棋放置的解。并把它们以上面的序列方法输出。解按字典顺序排列。请输出前3个解。最后一行是解的总个数。
//以下的话来自usaco官方,不代表洛谷观点
特别注意: 对于更大的N(棋盘大小N x N)你的程序应当改进得更有效。不要事先计算出所有解然后只输出(或是找到一个关于它的公式),这是作弊。如果你坚持作弊,那么你登陆USACO Training的帐号删除并且不能参加USACO的任何竞赛。我警告过你了!
输入输出格式
输入格式:一个数字N (6 <= N <= 13) 表示棋盘是N x N大小的。
输出格式:前三行为前三个解,每个解的两个数字之间用一个空格隔开。第四行只有一个数字,表示解的总数。
表示本咸鱼用了一个小时来写和该(真的是太久没有写了,一开始超时后面看了下别人的代码发现自己的标记太麻烦了)
1.我本来是每放一个棋子就在格子上模拟删除,但太慢了,可以用一个二维数组b[1][x]记录列,b[2][x]记录左对角线,b[3][x];记录右对角线(有对角线时x+y为定值,坐为x-y+2*n为定值这样可以防止出现负数和重复)
2.回溯时和前面的更改一一对应。
咸鱼代码:
// luogu-judger-enable-o2
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
int b[5][28],n,cau,ans[10];
void outo()
{
cau++;
if(cau<=3){
for(int i=1;i<=n;i++)
printf("%d ",ans[i]);
printf("\n");
}
}
void dfs(int h)
{
for(int i=1;i<=n;i++)
if(b[1][i]==0&&b[2][h+i]==0&&b[3][h-i+n*2]==0)
{
ans[h]=i;
b[1][i]=b[2][h+i]=b[3][h-i+n*2]=1;
if(h==n) outo(); else dfs(h+1);
b[1][i]=b[2][h+i]=b[3][h-i+n*2]=0;ans[h]=0;
}
}
int main()
{
scanf("%d",&n);
memset(b,0,sizeof(b));
cau=0;dfs(1);
printf("%d",cau);
}