Chino with Equation 组合数学 隔板法

链接:https://ac.nowcoder.com/acm/contest/553/D
来源:牛客网
题目

Chino的数学很差,因此Cocoa非常担心。今天,Cocoa要教Chino解不定方程。
众所周知,不定方程的解有0个或者若干个。
给出方程:

Cocoa想知道这个不定方程的正整数解和非负整数解各有几个。
题目对Chino来说太难啦,你能帮一帮Chino吗?

输入描述:

两个正整数m, n

输出描述:

题目要求的答案,即正整数解的个数和非负整数解的个数 。由于答案可能会很大,你只需要输出答案 mod(10^9 + 7) 即可。

样例

输入

4 7

输出

20 120

题解

高中学过一个组合数学的一个方法,隔板法。

百度百科讲的隔板法就挺好的,链接https://baike.baidu.com/item/%E9%9A%94%E6%9D%BF%E6%B3%95/3902458?fr=aladdin

没零的情况下的方案数是C(n-1, m-1)

有零的情况下的方案数是C(n+m-1, m-1)

代码

#include<algorithm>
#include <iostream>
#include<cstring>
#include <cstdio>
using namespace std;
typedef long long ll;
const int maxn=2e6+5;
const int mod=1e9+7;
ll fac[maxn];
int n,m;
void init(){
    fac[0]=fac[1]=1;
    for(int i=2;i<=2*n;i++){
        fac[i]=fac[i-1]*i%mod;
    }
}
ll ksm(ll a,ll k){
    a%=mod;
    ll ans=1;
    while(k){
        if(k&1) ans=ans*a%mod;
        k>>=1;
        a=a*a%mod;
    }
    return ans;
}
int main(){
    cin>>m>>n;
    init();
    ll ans=fac[n-1]*ksm(fac[m-1]*fac[n-m],mod-2)%mod;
    ll ans2=fac[n+m-1]*ksm(fac[m-1]*fac[n],mod-2)%mod;
    cout<<ans<<" "<<ans2<<endl;
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值