OpenAI推出的视频生成模型Sora以其独特的想象力在网络上广受关注。
这一模型的核心正是近年来备受瞩目的扩散模型技术。为了让机器展现出与人类相似的想象力,深度生成模型已经取得了显著的进步。
为了让你更深入地理解和掌握这一前沿技术,我们精心整理了UC伯克利大学提供的《扩散模型》课程视频及210页PPT,全面解析扩散模型的原理与应用。
扩散模型由两个核心过程组成:前向过程和反向过程。在前向过程中,数据被逐步转化为简单的先验分布。而在反向过程中,这一转化过程被逆转,通过训练有素的神经网络模拟微分方程,最终生成新的数据。与其他模型相比,扩散模型提供了更为稳定的训练目标以及更优的生成效果。
扩散模型在计算机视觉、自然语言处理等多个领域表现尤为出众,它成功解决了诸如VAEs的后验分布对齐问题、GANs的不稳定性、EBMs的计算量过大以及NFs的网络约束等问题,成为当今研究的热点。
无论你是研究人员还是开发人员,这门课程都将为你提供宝贵的知识和见解,帮助你深入掌握扩散模型。