OpenJ_Bailian - 2755 神奇的口袋 【动态规划】

题目链接https://cn.vjudge.net/problem/OpenJ_Bailian-2755

Description

有一个神奇的口袋,总的容积是40,用这个口袋可以变出一些物品,这些物品的总体积必须是40。John现在有n个想要得到的物品,每个物品的体积分别是a 1,a 2……a n。John可以从这些物品中选择一些,如果选出的物体的总体积是40,那么利用这个神奇的口袋,John就可以得到这些物品。现在的问题是,John有多少种不同的选择物品的方式。

Input

输入的第一行是正整数n (1 <= n <= 20),表示不同的物品的数目。接下来的n行,每行有一个1到40之间的正整数,分别给出a 1,a 2……a n的值。

Output

输出不同的选择物品的方式的数目。

Sample Input

3
20
20
20

Sample Output

3

分析:

对某个物品,要么选要么不选,可以借助递归来枚举所有可能的情况,因为数据规模小这题也可以过。但是当数据规模比较大时,就需要用到dp

AC代码:

 

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
/*    递归式枚举
int a[25],n;
bool book[25];
int MaxSum=0;
void GetMax_Sum(int res,int s)
{
    if(res == 0) {
        MaxSum++;
        return;
    }
    if(res < 0)
        return;
    for(int i=s;i<=n;i++)
        GetMax_Sum(res-a[i],i+1);
}
int main()
{
    cin >> n;
    for(int i=1;i<=n;i++)
        cin >> a[i];
    memset(book,false,sizeof book);
    GetMax_Sum(40,1);
    cout << MaxSum   << endl;
}*/
//   dp
int main()
{
    int n,a[25],Max[45][25];  // Max[i][j]表示在用前j种物品填充容量i的方式数
    memset(Max,0,sizeof Max);
    cin >> n;
    for(int i=1;i<=n;i++) {
        cin >> a[i];
        Max[0][i] = 1;
    }
    Max[0][0] = 1;
    for(int i=1;i<=40;i++) {
        for(int j=1;j<=n;j++) {
            Max[i][j] = Max[i][j-1];
            if(i-a[j] >= 0)
                Max[i][j] += Max[i-a[j]][j-1];
        }
    }
    cout << Max[40][n] << endl;

}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值