题目链接:https://cn.vjudge.net/problem/OpenJ_Bailian-2755
Description
有一个神奇的口袋,总的容积是40,用这个口袋可以变出一些物品,这些物品的总体积必须是40。John现在有n个想要得到的物品,每个物品的体积分别是a 1,a 2……a n。John可以从这些物品中选择一些,如果选出的物体的总体积是40,那么利用这个神奇的口袋,John就可以得到这些物品。现在的问题是,John有多少种不同的选择物品的方式。
Input
输入的第一行是正整数n (1 <= n <= 20),表示不同的物品的数目。接下来的n行,每行有一个1到40之间的正整数,分别给出a 1,a 2……a n的值。
Output
输出不同的选择物品的方式的数目。
Sample Input
3 20 20 20Sample Output
3
分析:
对某个物品,要么选要么不选,可以借助递归来枚举所有可能的情况,因为数据规模小这题也可以过。但是当数据规模比较大时,就需要用到dp
AC代码:
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
/* 递归式枚举
int a[25],n;
bool book[25];
int MaxSum=0;
void GetMax_Sum(int res,int s)
{
if(res == 0) {
MaxSum++;
return;
}
if(res < 0)
return;
for(int i=s;i<=n;i++)
GetMax_Sum(res-a[i],i+1);
}
int main()
{
cin >> n;
for(int i=1;i<=n;i++)
cin >> a[i];
memset(book,false,sizeof book);
GetMax_Sum(40,1);
cout << MaxSum << endl;
}*/
// dp
int main()
{
int n,a[25],Max[45][25]; // Max[i][j]表示在用前j种物品填充容量i的方式数
memset(Max,0,sizeof Max);
cin >> n;
for(int i=1;i<=n;i++) {
cin >> a[i];
Max[0][i] = 1;
}
Max[0][0] = 1;
for(int i=1;i<=40;i++) {
for(int j=1;j<=n;j++) {
Max[i][j] = Max[i][j-1];
if(i-a[j] >= 0)
Max[i][j] += Max[i-a[j]][j-1];
}
}
cout << Max[40][n] << endl;
}