题目链接:http://bailian.openjudge.cn/practice/2755?lang=en_US
Description
有一个神奇的口袋,总的容积是40,用这个口袋可以变出一些物品,这些物品的总体积必须是40。John现在有n个想要得到的物品,每个物品的体积分别是a
1,a
2……a
n。John可以从这些物品中选择一些,如果选出的物体的总体积是40,那么利用这个神奇的口袋,John就可以得到这些物品。现在的问题是,John有多少种不同的选择物品的方式。
Input
输入的第一行是正整数n (1 <= n <= 20),表示不同的物品的数目。接下来的n行,每行有一个1到40之间的正整数,分别给出a
1,a
2……a
n的值。
Output
输出不同的选择物品的方式的数目。
Sample Input
3 20 20 20
Sample Output
3
状态压缩:
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
int a[30];
int main()
{
int n;
while(~scanf("%d",&n))
{
int sum=0;
for(int i=0;i<n;i++) scanf("%d",&a[i]);
for(int i=1;i<=(1<<n)-1;i++){
//cout << i << endl;
int ans=0;
for(int j=0;((1<<j)-1)<=i;j++)
{
if(i & (1<<j)) ans+=a[j];
}
//cout << ans << endl << endl;
if(ans==40) sum++;
}
printf("%d\n",sum);
}
return 0;
}
DFS:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int maxn=20;
const int maxv=40;
int a[maxn];
int n;
int ans=0;
void dfs(int index,int cnt)
{
if(cnt>40) return;
if(index==n){
if(cnt==maxv)
ans++;
return;
}
dfs(index+1,cnt);
dfs(index+1,cnt+a[index]);
}
int main()
{
scanf("%d",&n);
for(int i=0;i<n;i++) scanf("%d",&a[i]);
dfs(0,0);
printf("%d\n",ans);
return 0;
}