ConvLSTM的用法

简单RNN与LSTM对比

LSTM计算示意

LSTM计算示意

import torch
from torch import nn
import torch.nn.functional as f
from torch.autograd import Variable


# Define some constants
KERNEL_SIZE = 3
PADDING = KERNEL_SIZE // 2


class ConvLSTMCell(nn.Module):
    """
    Generate a convolutional LSTM cell
    """

    def __init__(self, input_size, hidden_size):
        super(ConvLSTMCell, self).__init__()
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.Gates = nn.Conv2d(input_size + hidden_size, 4 * hidden_size, KERNEL_SIZE, padding=PADDING)

    def forward(self, input_, prev_state):

        # get batch and spatial sizes
        batch_size = input_.data.size()[0]
        spatial_size = input_.data.size()[2:]

        # generate empty prev_state, if None is provided
        if prev_state is None:
            state_size = [batch_size, self.hidden_size] + list(spatial_size)
            prev_state = (
                Variable(torch.zeros(state_size)),
                Variable(torch.zeros(state_size))
            )

        prev_hidden, prev_cell = prev_state

        # data size is [batch, channel, height, width]
        stacked_inputs = torch.cat((input_, prev_hidden), 1)
        gates = self.Gates(stacked_inputs)

        # chunk across channel dimension
        in_gate, remember_gate, out_gate, cell_gate = gates.chunk(4, 1)

        # apply sigmoid non linearity
        in_gate = f.sigmoid(in_gate)
        remember_gate = f.sigmoid(remember_gate)
        out_gate = f.sigmoid(out_gate)

        # apply tanh non linearity
        cell_gate = f.tanh(cell_gate)

        # compute current cell and hidden state
        cell = (remember_gate * prev_cell) + (in_gate * cell_gate)
        hidden = out_gate * f.tanh(cell)

        return hidden, cell


def _main():
    """
    Run some basic tests on the API
    """

    # define batch_size, channels, height, width
    b, c, h, w = 1, 3, 4, 8
    d = 5           # hidden state size
    lr = 1e-1       # learning rate
    T = 6           # sequence length
    max_epoch = 20  # number of epochs

    # set manual seed
    torch.manual_seed(0)

    print('Instantiate model')
    model = ConvLSTMCell(c, d)
    print(repr(model))

    print('Create input and target Variables')
    x = Variable(torch.rand(T, b, c, h, w))
    y = Variable(torch.randn(T, b, d, h, w))

    print('Create a MSE criterion')
    loss_fn = nn.MSELoss()

    print('Run for', max_epoch, 'iterations')
    for epoch in range(0, max_epoch):
        state = None
        loss = 0
        for t in range(0, T):
            state = model(x[t], state)
            loss += loss_fn(state[0], y[t])

        print(' > Epoch {:2d} loss: {:.3f}'.format((epoch+1), loss.data[0]))

        # zero grad parameters
        model.zero_grad()

        # compute new grad parameters through time!
        loss.backward()

        # learning_rate step against the gradient
        for p in model.parameters():
            p.data.sub_(p.grad.data * lr)

    print('Input size:', list(x.data.size()))
    print('Target size:', list(y.data.size()))
    print('Last hidden state size:', list(state[0].size()))


if __name__ == '__main__':
    _main()

 

  • 3
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
好的,下面是更具体的实现步骤: 1. 准备数据集:收集全球TEC数据集,并将其分为训练集、验证集和测试集。可以使用类似于时序交叉验证的方法来确保数据集的平稳性。 2. 数据预处理:对数据进行预处理,包括归一化、平滑处理、填充缺失值等。 3. 设计网络结构:使用ConvLSTM网络结构来处理时空序列数据。可以参考论文和相关文献来设计网络结构。在设计网络结构时,需要注意输入和输出的维度。 4. 训练模型:使用训练集来训练ConvLSTM模型。可以使用标准的反向传播算法和优化器(如Adam)来更新网络参数。在训练过程中,可以使用验证集来评估模型性能,并在过拟合时进行早期停止。 5. 模型评估:使用测试集来评估模型的性能。可以使用一些指标来评估模型的准确性和稳定性,如均方误差(MSE)、平均绝对误差(MAE)等。 6. 模型应用:使用已训练好的ConvLSTM模型来预测新的全球TEC数据。可以使用滚动预测的方法来处理连续的时空序列数据。 具体实现步骤如下: 1. 准备数据集:从国家地球物理数据中心等网站下载全球TEC数据集。将数据集划分为训练集、验证集和测试集,并将数据集转换为适合ConvLSTM模型输入的格式,如将时空序列数据划分为多个时间步长,每个时间步长包含一个二维的空间网格图像。 2. 数据预处理:对数据进行预处理,包括归一化、平滑处理、填充缺失值等。归一化可以使用最小-最大归一化或标准化方法。平滑处理可以使用滑动平均或卷积平滑方法。填充缺失值可以使用插值或平均值等方法。 3. 设计网络结构:使用ConvLSTM网络结构来处理时空序列数据。ConvLSTM网络结构包含多个ConvLSTM层和卷积层,每个层都可以使用不同的卷积核大小和步长。在设计网络结构时,需要注意输入和输出的维度,可以使用池化层和批标准化层来降低特征图的维度。 4. 训练模型:使用训练集来训练ConvLSTM模型。可以使用标准的反向传播算法和优化器(如Adam)来更新网络参数。在训练过程中,可以使用验证集来评估模型性能,并在过拟合时进行早期停止。 5. 模型评估:使用测试集来评估模型的性能。可以使用一些指标来评估模型的准确性和稳定性,如均方误差(MSE)、平均绝对误差(MAE)等。 6. 模型应用:使用已训练好的ConvLSTM模型来预测新的全球TEC数据。可以使用滚动预测的方法来处理连续的时空序列数据。 以上是使用ConvLSTM预测全球TEC数据的具体实现步骤,需要注意的是具体实现还需要根据具体情况来确定。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值