AMD GPU(A卡)+Tensorflow+Anaconda+ubuntu18.04.2 安装方法

本文档详细介绍了如何在Ubuntu 18.04.2系统上,结合AMD GPU(A卡)和Anaconda,安装并配置ROCm平台及TensorFlow。首先安装Anaconda,接着添加ROCm仓库并安装相关软件包,最后通过conda或系统python3安装TensorFlow。注意ROCm仅支持AMD4系以后的显卡。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

AMD GPU(A卡)+Tensorflow+Anaconda+ubuntu18.04.2 安装方法

Linux下可以可以通过AMD的ROCm平台实现Tensorflow的加速,下面介绍详细的方法。
首先说明系统,本人尝试过Ubuntu16.04.6和18.04.2,16.04总在安装过程中卡在设置rocm-profiler这一步。建议使用18.04系统,如果有大神在16.04系统上安装成功,请告诉我,感谢。
因为本人习惯了使用Anaconda,故将其一起安装。如果不想使用conda后面也会给出使用系统内python3安装的方法。

安装Anaconda

下载Anaconda,目前ROCm版的Tensorflow已经支持到python3.6,所以下载Anaconda3-5.2.0即可,地址:
https://repo.continuum.io/archive/
下载后是一个.sh文件,直接运行安装即可。

安装ROCm

添加ROCm的仓库

wget -qO - http:/
要在Ubuntu安装PyTorch GPU版本,可以按照以下步骤进行操作: 1. 首先,确保你已经安装了NVIDIA显卡驱动程序。可以通过运行以下命令来检查是否安装了正确的驱动程序版本: ``` nvidia-smi ``` 这将显示你当前安装的NVIDIA驱动程序的版本信息。 2. 接下来,你需要安装CUDA工具包。可以通过以下步骤进行安装: a. 根据你的显卡型号和操作系统版本,在NVIDIA官方网站下载对应版本的CUDA工具包。 b. 运行下载的安装程序,并按照提示进行安装。注意选择合适的安装选项,以确保安装了CUDA驱动程序和CUDA工具。 c. 安装完成后,将CUDA的bin目录添加到系统的PATH环境变量中,这样你就可以在任意位置运行CUDA相关的命令。 3. 然后,你需要安装cuDNN库。cuDNN是一个针对深度学习任务进行加速的GPU库。可以按照以下步骤进行安装: a. 前往NVIDIA开发者网站,注册一个账号并下载合适版本的cuDNN库。 b. 解压下载的cuDNN库文件,并将其中的bin、lib和include文件夹分别复制到对应的CUDA安装目录下。 4. 现在,你可以使用Anaconda安装PyTorch。可以按照以下步骤进行安装: a. 打开终端,运行以下命令创建一个新的conda环境: ``` conda create -n pytorch_gpu ``` b. 激活该环境: ``` conda activate pytorch_gpu ``` c. 运行以下命令安装PyTorch和相关的依赖库: ``` conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch ``` 这将安装PyTorch GPU版本以及其他必要的依赖库。 5. 完成以上步骤后,你就成功在Ubuntu安装了PyTorch GPU版本。 请注意,上述步骤中的CUDA版本和cuDNN版本可能需要根据你的具体显卡和操作系统进行调整。建议在安装之前查阅PyTorch官方文档和NVIDIA官方网站获取更详细的信息和指导。还可以参考引用和引用[2]中提供的安装命令和参考资料。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值