2022年02月18日 Loyar的冲浪时刻

2022年02月18日 Loyar的冲浪时刻

此专栏系列记录了Loyar的数学冲浪日常,由yjds(lzy3.14@qq.com)整理,已通过Loyar本人同意,仅在CSDN发布,链接:https://blog.csdn.net/weixin_42772106/article/details/126036031


本文关键词:xsinx/(1+cos^2x) 0到π/2 定积分 xcos/(1+sin^2x)


——以下是正文 ——

求定积分

∫ 0 π 2 x sin ⁡ x 1 + cos ⁡ 2 x d x \int_{0}^{\frac{\pi} {2}} \frac{x \sin x}{1+\cos ^{2} x} \mathrm{d} x 02π1+cos2xxsinxdx

Loyar的做法

在这里插入图片描述

评注

没有方法,全是技巧,需要注意的是:

  1. 第五行到第六行省略了一个求极限的过程
    − a r s i n h 1 t a r s i n h t ∣ 0 1 = − a r s i n h 2 1 + lim ⁡ t → 0 a r s i n h 1 t a r s i n h t = − ln ⁡ 2 ( 1 + 2 ) + 0 \begin{align*} -\left.\mathrm{arsinh} \frac{1}{t} \mathrm{arsinh} t\right|_{0} ^{1} & = -\mathrm{arsinh}^{2} 1+\lim_{t \to 0} \mathrm{arsinh} \frac{1}{t} \mathrm{arsinh} t \\ & = -\ln ^{2}(1+\sqrt{2})+0 \end{align*} arsinht1arsinht 01=arsinh21+t0limarsinht1arsinht=ln2(1+2 )+0

  2. 第九行,需先用区间再现公式将 ∫ 0 π 2 ln ⁡ 1 + sin ⁡ u cos ⁡ u sin ⁡ u d u \int_{0}^{\frac{\pi}{2}} \frac{\ln \frac{1+\sin u}{\cos u}}{\sin u} \mathrm{d} u 02πsinulncosu1+sinudu转化为 ∫ 0 π 2 ln ⁡ 1 + cos ⁡ u sin ⁡ u cos ⁡ u d u \int_{0}^{\frac{\pi}{2}} \frac{\ln \frac{1+\cos u}{\sin u}}{\cos u} \mathrm{d} u 02πcosulnsinu1+cosudu,否则不利于后续计算。

  3. 第十一行,需要求全体奇数的倒数平方和。
    首先我们求全体正整数倒数的平方和,这是著名的巴塞尔问题。如果使用常规的逐项求导逐项积分则最后将需要计算貌似积不出来的一个无穷积分 − ∫ 0 1 ln ⁡ ( 1 − x ) x   d x -\int_{0}^{1} \frac{\ln (1-x)}{x} \mathrm{~d} x 01xln(1x) dx。这里我们简单介绍欧拉提出的方法:将 f ( x ) = sin ⁡ x x f(x)=\frac{\sin x}{x} f(x)=xsinx幂级数展开后,带入 x = z x=\sqrt{z} x=z ,然后利用韦达定理,常数项为1时,根的倒数和等于一次项系数的相反数,就可以求出 ∑ k = 1 ∞ 1 k 2 = π 2 6 \sum_{k=1}^{\infty } \frac{1}{k^{2} } =\frac{\pi^{2}}{6} k=1k21=6π2,所以 ∑ k = 1 ∞ 1 ( 2 k − 1 ) 2 = ∑ k = 1 ∞ 1 k 2 − ∑ k = 1 ∞ 1 ( 2 k ) 2 = 3 4 ∑ k = 1 ∞ 1 k 2 = π 2 8 \sum_{k=1}^{\infty } \frac{1}{(2k-1)^{2} } =\sum_{k=1}^{\infty } \frac{1}{k^{2} }-\sum_{k=1}^{\infty } \frac{1}{(2k)^{2} } =\frac{3}{4 }\sum_{k=1}^{\infty } \frac{1}{k^{2} } =\frac{\pi^{2}}{8} k=1(2k1)21=k=1k21k=1(2k)21=43k=1k21=8π2。其他巴塞尔问题求解方法可以参考下面文章:
    知乎-正整数倒数的平方和(巴塞尔问题)
    知乎-为什么全体自然数平方的倒数和等于π^2/6?

结尾

与本题类似的题目还有 ∫ 0 π x cos ⁡ x 1 + sin ⁡ 2 x d x \int_{0}^{\pi} \frac{x \cos x}{1+\sin ^{2} x} \mathrm{d} x 0π1+sin2xxcosxdx
参考求解如下(来源于网络)
在这里插入图片描述
在这里插入图片描述

  • 18
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值