积分法推导正整数平方和公式
积分法推导正整数平方和公式
正整数平方和公式:
1
2
+
2
2
+
3
2
+
⋯
+
n
2
=
n
(
n
+
1
)
(
2
n
+
1
)
6
\Large 1^2 + 2^2 + 3^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6}
12+22+32+⋯+n2=6n(n+1)(2n+1)
思路
我们并不知道如何求
∑
i
=
1
n
i
2
\large \sum_{i=1}^{n} i^2
∑i=1ni2
但是我们知道如何求
∑
i
=
1
n
i
\large \sum_{i=1}^{n} i
∑i=1ni
受求导法求等差数列乘等比数列前n项和的启发产生了个有意思的思路
可以试图借助
∫
2
x
d
x
=
x
2
+
C
\large \int 2x dx = x^2 + C
∫2xdx=x2+C 来搭建桥梁,求解。
推导过程(2020.1.4)
设
f
(
n
)
=
2
n
f(n) = 2n
f(n)=2n,则
∫
f
(
n
)
d
n
=
n
2
+
C
\int f(n) dn = n^2 + C
∫f(n)dn=n2+C
我们现在要求
∑
i
=
1
n
∫
f
(
i
)
d
n
\sum_{i=1}^{n} \int f(i)dn
i=1∑n∫f(i)dn
那么可以得出
∑
i
=
1
n
i
2
=
∑
i
=
1
n
(
∫
f
(
i
)
d
n
−
C
)
+
n
C
=
(
∫
∑
i
=
1
n
f
(
i
)
d
n
)
−
n
C
+
n
C
=
(
∫
2
∑
i
=
1
n
i
d
n
)
−
n
C
+
n
C
=
(
∫
2
⋅
(
1
+
n
)
n
2
d
n
)
−
n
C
+
n
C
=
(
∫
(
n
2
+
n
)
d
n
)
−
n
C
+
n
C
=
n
3
3
+
n
2
2
+
n
C
\begin{alignedat}{2} \sum_{i=1}^{n} i^2& = \sum_{i=1}^{n} (\int f(i) dn - C) + nC\\ & = (\int \sum_{i=1}^{n} f(i) dn) - nC + nC\\ & = (\int 2\sum_{i=1}^{n} i dn) - nC + nC\\ & = (\int 2\cdot \frac{(1+n)n}{2} dn) - nC + nC\\ & = (\int (n^2+n) dn) - nC + nC\\ & = \frac{n^3}{3} + \frac{n^2}{2} + nC \end{alignedat}
i=1∑ni2=i=1∑n(∫f(i)dn−C)+nC=(∫i=1∑nf(i)dn)−nC+nC=(∫2i=1∑nidn)−nC+nC=(∫2⋅2(1+n)ndn)−nC+nC=(∫(n2+n)dn)−nC+nC=3n3+2n2+nC
通分得:
原
式
=
2
n
3
+
3
n
2
+
6
n
C
6
=
n
(
2
n
2
+
3
n
+
6
C
)
6
\begin{alignedat}{2} 原式& = \frac{2n^3 + 3n^2 + 6nC}{6}\\ & = \frac{n(2n^2 + 3n + 6C)}{6}\\ \end{alignedat}
原式=62n3+3n2+6nC=6n(2n2+3n+6C)
我们将
n
=
1
n=1
n=1代入,得:
2
+
3
+
6
C
6
=
∑
i
=
1
1
i
2
=
1
2
=
1
\frac{2 + 3 + 6C}{6} = \sum_{i=1}^{1} i^2 = 1^2 = 1
62+3+6C=i=1∑1i2=12=1
即
5
+
6
C
=
6
5 + 6C = 6
5+6C=6 ,解得
C
=
1
6
C=\frac{1}{6}
C=61
所以:
原
式
=
n
(
2
n
2
+
3
n
+
1
)
6
\begin{alignedat}{2} 原式& = \frac{n(2n^2 + 3n + 1)}{6}\\ \end{alignedat}
原式=6n(2n2+3n+1)
因式分解得:
原
式
=
n
(
n
+
1
)
(
2
n
+
1
)
6
\begin{alignedat}{2} 原式& = \frac{n(n+1)(2n + 1)}{6} \end{alignedat}
原式=6n(n+1)(2n+1)
即
1
2
+
2
2
+
3
2
+
⋯
+
n
2
=
n
(
n
+
1
)
(
2
n
+
1
)
6
\Large 1^2 + 2^2 + 3^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6}
12+22+32+⋯+n2=6n(n+1)(2n+1)
得解。
推导过程(2020.1.6)
我们首先来证明一个结论,由本人独立发现(要是有专业的结论的话也请大佬告诉我结论的名字)
设有一函数
f
(
x
)
f(x)
f(x) ,
f
(
x
)
=
F
(
x
)
+
C
f(x) = F(x) + C
f(x)=F(x)+C ,其中
F
(
x
)
F(x)
F(x) 不含常数项,即
∫
F
′
(
x
)
d
x
=
F
(
x
)
\int F'(x) dx = F(x)
∫F′(x)dx=F(x) 。
∑
i
=
1
n
[
∫
F
′
(
x
)
d
x
∣
x
=
i
+
C
]
=
∫
∑
i
=
1
n
F
′
(
i
)
d
n
+
n
C
\Large \sum_{i=1}^{n} \Bigg[ \int F'(x)dx \Bigg|_{x=i} +C \Bigg] = \int \sum_{i=1}^{n} F'(i) dn + nC
i=1∑n[∫F′(x)dx∣∣∣∣∣x=i+C]=∫i=1∑nF′(i)dn+nC
由于积分是求导的逆运算,我们可以证明对应的求导结论:
∑
i
=
1
n
d
d
x
f
(
x
)
∣
x
=
i
=
d
d
n
∑
i
=
1
n
f
(
i
)
\Large \sum_{i=1}^{n} \frac{d}{dx} f(x) \Bigg|_{x=i} = \frac{d}{dn} \sum_{i=1}^{n} f(i)
i=1∑ndxdf(x)∣∣∣∣∣x=i=dndi=1∑nf(i)
证明过程如下:
我
们
可
以
设
:
S
(
n
)
=
∑
i
=
1
n
f
(
x
)
\small 我们可以设 : \quad \large S(n) = \sum_{i=1}^{n}f(x) \quad
我们可以设:S(n)=i=1∑nf(x)
则
待
证
等
式
等
价
于
:
∑
i
=
1
n
d
d
x
f
(
x
)
∣
x
=
i
=
d
d
n
S
(
n
)
\small 则待证等式等价于: \large \sum_{i=1}^{n} \frac{d}{dx} f(x) \Bigg|_{x=i} = \frac{d}{dn} S(n)
则待证等式等价于:i=1∑ndxdf(x)∣∣∣∣∣x=i=dndS(n)
由函数
S
(
n
)
S(n)
S(n)得定义可得:
f
(
i
)
=
{
S
(
i
)
i
=
1
S
(
i
)
−
S
(
i
−
1
)
i
>
1
\large f(i) = \begin{cases} S(i) & i = 1\\ S(i) - S(i-1) & i>1 \end{cases}
f(i)=⎩⎨⎧S(i)S(i)−S(i−1)i=1i>1
所以我们根据导数定义将左边展开可以得到:
原
式
=
∑
i
=
1
n
[
lim
Δ
x
→
0
f
(
i
+
Δ
x
)
−
f
(
i
)
Δ
x
]
=
lim
Δ
x
→
0
f
(
1
+
Δ
x
)
−
f
(
1
)
Δ
x
+
∑
i
=
2
n
{
lim
Δ
x
→
0
[
S
(
i
+
Δ
x
)
−
S
(
i
−
1
+
Δ
x
)
]
−
[
S
(
i
)
−
S
(
i
−
1
)
]
Δ
x
}
=
lim
Δ
x
→
0
f
(
1
+
Δ
x
)
−
f
(
1
)
Δ
x
+
∑
i
=
2
n
{
lim
Δ
x
→
0
[
S
(
i
+
Δ
x
)
−
S
(
i
)
]
−
[
S
(
i
−
1
+
Δ
x
)
−
S
(
i
−
1
)
]
Δ
x
}
=
lim
Δ
x
→
0
{
[
S
(
1
+
Δ
x
)
+
f
(
1
)
]
}
+
{
[
S
(
2
+
Δ
x
)
+
f
(
2
)
]
−
[
S
(
1
+
Δ
x
)
+
f
(
1
)
]
}
+
⋯
+
{
[
S
(
n
+
Δ
x
)
+
f
(
n
)
]
−
[
S
(
n
−
1
+
Δ
x
)
+
f
(
n
−
1
)
]
}
Δ
x
=
lim
Δ
x
→
0
S
(
n
+
Δ
x
)
−
S
(
n
)
Δ
x
=
d
d
n
S
(
n
)
\begin{alignedat}{2} \small 原式= & \sum_{i=1}^{n} \Bigg[ \lim_{\Delta x \to 0} \frac{f(i+\Delta x)-f(i)}{\Delta x} \Bigg]\\ = & \lim_{\Delta x \to 0} \frac{f(1+\Delta x)-f(1)}{\Delta x} +\\ &\sum_{i=2}^{n} \Bigg\{ \lim_{\Delta x \to 0} \frac{ \Big[ S(i + \Delta x) - S(i-1 + \Delta x) \Big] - \Big[ S(i) - S(i-1) \Big] }{\Delta x} \Bigg\}\\ = & \lim_{\Delta x \to 0} \frac{f(1+\Delta x)-f(1)}{\Delta x} + \sum_{i=2}^{n} \Bigg\{ \lim_{\Delta x \to 0} \frac{ \Big[ S(i + \Delta x) - S(i) \Big] - \Big[ S(i-1 + \Delta x) - S(i-1) \Big] }{\Delta x} \Bigg\}\\ = & \lim_{\Delta x \to 0} \frac{ \Bigg\{\Big[ S(1+ \Delta x) + f(1) \Big]\Bigg\} +\Bigg\{\Big[ S(2+ \Delta x) + f(2) \Big] - \Big[ S(1+ \Delta x) + f(1) \Big]\Bigg\} + \cdots + \Bigg\{\Big[ S(n+ \Delta x) + f(n) \Big] - \Big[ S(n-1+ \Delta x) + f(n-1) \Big]\Bigg\} }{\Delta x}\\ = & \lim_{\Delta x \to 0} \frac{ S(n + \Delta x) - S(n) }{\Delta x}\\ = & \frac{d}{dn}S(n) \end{alignedat}
原式======i=1∑n[Δx→0limΔxf(i+Δx)−f(i)]Δx→0limΔxf(1+Δx)−f(1)+i=2∑n{Δx→0limΔx[S(i+Δx)−S(i−1+Δx)]−[S(i)−S(i−1)]}Δx→0limΔxf(1+Δx)−f(1)+i=2∑n{Δx→0limΔx[S(i+Δx)−S(i)]−[S(i−1+Δx)−S(i−1)]}Δx→0limΔx{[S(1+Δx)+f(1)]}+{[S(2+Δx)+f(2)]−[S(1+Δx)+f(1)]}+⋯+{[S(n+Δx)+f(n)]−[S(n−1+Δx)+f(n−1)]}Δx→0limΔxS(n+Δx)−S(n)dndS(n)
由此,我们证明了结论。
设
F
(
x
)
=
x
2
F(x) = x^2
F(x)=x2 ,
F
′
(
x
)
=
2
x
F'(x) = 2x
F′(x)=2x 。
∑
i
=
1
n
i
2
=
∑
i
=
1
n
(
∫
F
′
(
x
)
d
x
∣
x
=
i
+
C
)
=
∫
∑
i
=
1
n
F
′
(
i
)
d
n
+
n
C
=
∫
2
∑
i
=
1
n
i
d
n
+
n
C
=
∫
2
⋅
(
1
+
n
)
n
2
d
n
+
n
C
=
∫
(
n
2
+
n
)
d
n
+
n
C
=
n
3
3
+
n
2
2
+
n
C
=
2
n
3
+
3
n
2
+
6
n
C
6
=
n
(
2
n
2
+
3
n
+
6
C
)
6
\begin{alignedat}{2} \sum_{i=1}^{n} i^2 & = \sum_{i=1}^{n} (\int F'(x) dx\Bigg|_{x=i} + C)\\ & = \int \sum_{i=1}^{n} F'(i) dn + nC\\ & = \int 2\sum_{i=1}^{n} i dn + nC\\ & = \int 2\cdot \frac{(1+n)n}{2} dn + nC\\ & = \int (n^2+n) dn + nC\\ & = \frac{n^3}{3} + \frac{n^2}{2} + nC\\ & = \frac{2n^3 + 3n^2 + 6nC}{6}\\ & = \frac{n(2n^2 + 3n + 6C)}{6}\\ \end{alignedat}
i=1∑ni2=i=1∑n(∫F′(x)dx∣∣∣∣∣x=i+C)=∫i=1∑nF′(i)dn+nC=∫2i=1∑nidn+nC=∫2⋅2(1+n)ndn+nC=∫(n2+n)dn+nC=3n3+2n2+nC=62n3+3n2+6nC=6n(2n2+3n+6C)
将
n
=
1
n=1
n=1 代入
∑
i
=
1
n
i
2
=
n
(
2
n
2
+
3
n
+
6
C
)
6
1
=
n
(
2
+
3
+
6
C
)
6
\sum_{i=1}^{n} i^2 = \frac{n(2n^2 + 3n + 6C)}{6}\\ \ \ 1 = \frac{n(2 + 3 + 6C)}{6}
i=1∑ni2=6n(2n2+3n+6C) 1=6n(2+3+6C)
解得
C
=
1
6
C = \frac{1}{6}
C=61 , 可检验
n
n
n 取其他值时亦有
C
=
1
6
C = \frac{1}{6}
C=61 。
故:
∑
i
=
1
n
i
2
=
n
(
2
n
2
+
3
n
+
6
C
)
6
=
n
(
2
n
2
+
3
n
+
1
)
6
\large \sum_{i=1}^{n} i^2 = \frac{n(2n^2 + 3n + 6C)}{6}= \frac{n(2n^2 + 3n + 1)}{6}
i=1∑ni2=6n(2n2+3n+6C)=6n(2n2+3n+1)
因式分解得:
∑
i
=
1
n
i
2
=
n
(
n
+
1
)
(
2
n
+
1
)
6
\Large \sum_{i=1}^{n} i^2 = \frac{n(n + 1)(2n + 1)}{6}
i=1∑ni2=6n(n+1)(2n+1)
得解。
一些补充
一位网友4月份向我提了个问题,是关于第一个推导过程中-nC后为何还有+nC的。(然而我6月份才看到,十分抱歉
然后只能回3条但没解释完就先贴这儿吧:
2020.1.4 16:53
一些表达和数学符号的运用可能不准确,过程也许也不够严谨,但是受求导法求等差数列乘等比数列的前n项和的方法的启发,产生了这么个思路,在这里分享一下。
(敷衍地码完字滚回去继续复习明天的政治会考)
欢迎大佬指正问题,找时间完善内容。
2020.1.6 23:40
花了两天的时间来完善思路,闲暇时间里就在思考,终于得到一个比较严谨的证明过程。
之后有什么想法继续补充
2020.6.5 13:27
贴个解释(Orz