Machine Learning
文章平均质量分 71
靖淮CAFEBABE
严于律己,宽以待人
展开
-
【站在巨人的肩膀上】机器学习基础
梯度下降原创 2023-07-29 16:43:38 · 127 阅读 · 0 评论 -
【深度学习系列】五、Self Attention
self attention原创 2023-07-16 22:27:29 · 205 阅读 · 0 评论 -
深入理解embedding
在广告系统中,ctr、cvr预估模型训练时通常将样本转换成embedding输入网络进行训练,得到最终的预估值。embedding被称为sparse model、大模型等,是模型训练和预估中极其重要的一环。但关于embedding的含义和使用对于非科班人士比较晦涩,在这里对embedding的引入、含义、应用作系统性的介绍。原创 2023-06-09 00:17:04 · 2008 阅读 · 0 评论 -
【深度学习系列】三、训练过程中遇到的问题及优化方法
深度学习系列,模型训练过程中的一些优化方法,主要是梯度和参数更新的方法,包括Adagrad,Adam原创 2023-05-05 12:55:07 · 462 阅读 · 0 评论 -
【深度学习系列】二、模型训练指南
深度学习系列,模型训练训练的过程和优化思路原创 2023-03-18 11:41:52 · 315 阅读 · 0 评论 -
知识图谱算法中用到的evaluation measure
一、Precision、Recall、Accuracy和F1值1、基本概念TP(True Positive):在判定为positive的样本中,判断正确的数目。TN(True Negative):在判定为negative的样本中,判断正确的数目。FP(False Positive):在判定为positive的样本中,判断错误的数目。FN(False Negative):在判定为negative的样本中,判断错误的数目。也就是说,T/N表示判断正确或错误,P/N表示判定为正样本还是负样本。2、e原创 2020-12-02 16:44:37 · 540 阅读 · 0 评论