知识图谱算法中用到的evaluation measure

本文详细介绍了知识图谱算法的评估指标,包括Precision、Recall、Accuracy和F1值的概念及其相互关系,同时探讨了Hits@x和mean rank在trans系列算法中的应用。此外,还提到了sklearn库在分类评估中的AUC和多分类问题中的使用方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、Precision、Recall、Accuracy和F1值

1、基本概念

TP(True Positive):在判定为positive的样本中,判断正确的数目。
TN(True Negative):在判定为negative的样本中,判断正确的数目。
FP(False Positive):在判定为positive的样本中,判断错误的数目。
FN(False Negative):在判定为negative的样本中,判断错误的数目。

也就是说,T/N表示判断正确或错误,P/N表示判定为正样本还是负样本。

2、evaluation

Precision = TP /(TP+FP):真正属于类别P的/找到属于类别P的

Recall = TP / (TP+FN):真正属于类别P的/所有属于类别P的

Accuracy=(TP+TN)/(TP+TN+FP+FN)

精确率和召回率是相互影响的,理想情况下两者都高,但是一般情况下准确率高,召回率就低;召回率高,准确

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值