- 博客(116)
- 收藏
- 关注
原创 最强开源多模态大模型它来啦——一文详解Qwen3.5核心特性
Qwen3.5-397B-A17B是除夕夜开源的全球最强原生多模态模型,支持图像/视频输入,对话、编程、Agent构建等能力追平GPT-5.2。采用极致稀疏MoE架构(17B激活参数),性能超越Qwen3-Max,显存降低60%、吞吐提升19倍。
2026-02-17 19:10:30
676
原创 大模型训练全流程实战指南工具篇(六)——OCR工具实战指南(以DeepSeek-OCR-2为例)
本文以DeepSeek-OCR-2为例,详解其核心特性、本地部署及vLLM推理实战。并延伸后处理策略,涵盖数据清洗、RAG优化到多模态检索,打通从“读出来”到“用起来”的全链路,为高质量数据集构建提供实战指南。
2026-02-13 18:00:00
655
原创 LangChain不支持AgentSkills?那就从0到1实现一个!
本篇内容是笔者针对LangChain智能体工具过多导致性能下降的问题设计的一种仿Claude Skills的解决方案。其核心是通过双层工具架构(Loader Tools与Content Tools)、状态驱动与中间件拦截机制,实现工具的按需动态加载,从而显著降低Token消耗并提升模型调用工具的准确性与效率。
2026-02-10 17:30:00
876
原创 中美大模型“内战”都怎么打!一文详解Claude Opus 4.6和GPT-5.3 CodeX核心特性
本文聚焦AI领域巅峰对决,解析Claude 4.6 Opus与GPT-5.3 CodeX的核心特性:前者凭借超长上下文与强大Agent团队领衔复杂工作流;后者以精准意图理解与更高基准分数实现高效执行。二者技术路径分野,正共同推动AI向更专业、更实用的未来加速演进。
2026-02-09 07:59:54
885
原创 一文读懂OpenClaw核心特性与原理解析(文末附国产大模型+聊天软件接入OpenClaw视频教程地址)
本文分享了OpenClaw核心特性与设计原理,并提供接入国产大模型与聊天工具的实用指南。OpenClaw通过独特的网关系统,四层记忆架构、并借助Agent Skills体系灵活扩展向着未来数字员工迈进
2026-02-04 12:51:13
1058
原创 大模型训练全流程实战指南工具篇(五)——大模型训练全流程步骤详解与对应工具推荐
本篇系统分享了大模型训练数据、训练、评测三大核心阶段,为每个环节推荐了如EasyDataset、LLaMAFactory、EvalScope等关键实用工具,旨在帮助读者构建清晰的大模型训练路径。
2026-02-01 17:29:27
977
原创 Agent Skills完全指南:核心概念丨设计模式丨实战代码
本篇分享了Agent Skills的核心概念、设计模式。并以Claude Code为例,通过代码实战详细演示了Skills的创建、使用及进阶集成方法,帮助大家快速掌握AgentSkills的开发技巧。
2026-01-26 22:13:53
653
原创 大模型训练全流程实战指南基础篇(四)——本地部署大模型API调用实战:Python对接OpenAI格式全解析
本文详解OpenAI格式调用本地大模型的流程。首先解析标准协议的核心结构,随后通过从requests底层实现到openai库的实战对比,演示了API对接方法,并最终构建了一个流式多轮对话机器人应用。
2026-01-22 12:46:51
565
原创 大模型训练全流程实战指南基础篇(三)——大模型本地部署实战(Vllm与Ollama)
本期内容详细分享了两种主流本地部署方案:面向生产环境、支持高并发的高性能 VLLM 部署,以及面向个人快速体验、对硬件要求低的轻量级 Ollama部署,提供了从环境准备到代码调用的完整实战步骤。
2026-01-18 11:15:00
1335
原创 大模型训练全流程实战指南基础篇(二)——大模型文件结构解读与原理解析
本文以Qwen3为例,分享了大模型的核心文件组成与生成对话原理,并通过代码实战演示了从加载模型到获取回复的完整流程,帮助大家真正理解大模型的核心工作机制。
2026-01-14 19:52:18
614
原创 LangGraph智能体开发设计模式(四)——LangGraph多智能体设计模式:网络架构
本篇重点分享了网络架构及其典型实现Swarm架构的特点,并结合代码示例展示了如何利用langgraph-swarm库构建具备动态移交能力的智能体协作网络。
2026-01-10 11:15:00
1723
原创 大模型训练全流程实战指南(一)——为什么要学习大模型训练?
大模型训练是深入AI核心、从技术使用者迈向创造者的关键一步。它不仅赋能垂直领域创新,更是构建个人长期竞争力的硬核技能。无论是企业智能赋能还是研究生学术界的创新点构思,大模型训练都是大家追逐AI浪潮的必备技能,本合集将系统拆解从数据处理、模型训练到强化学习与智能体开发的全流程,并带你从零实现模型,大家掌握大模型训练的全技能,真正掌握塑造智能的能力!
2026-01-08 20:12:11
1016
原创 LangGraph智能体开发设计模式(三)——LangGraph多智能体设计模式:主管架构与分层架构
本篇分享了多智能体系统的两种核心架构。主管架构通过主管智能体管理多个专业智能体,适合结构化任务。分层架构引入了团队与层级概念,由顶层主管协调团队主管,从而分担决策压力,提升系统处理复杂任务的能力。
2026-01-05 17:45:00
598
原创 从分享AI,到与AI共舞—大模型真好玩的2025总结
从前端工程师转型AI领域,回顾了2025年如何通过撰写102篇技术文章分享学习经验,以及利用AI工具(如Trae)提升工作效率的实践。面对AI时代大家应该拥抱未来,用AI赋能工作,用AI改变生活。
2025-12-31 12:42:03
1076
原创 LangGraph智能体开发设计模式(二)——协调器-工作者模式、评估器-优化器模式
本文分享了LangGraph单智能体开发的两种高阶模式:协调器-工作者模式通过动态任务分解与委派,擅长处理复杂、不确定的子任务场景;评估器-优化器模式则通过生成-反馈-优化的迭代循环,持续提升输出质量。两者均显著增强了智能体处理复杂任务的能力,为开发更强大的AI应用提供了核心思路。
2025-12-30 09:05:36
817
原创 LangGraph智能体开发设计模式(一)——提示链模式、路由模式、并行化模式
本文概述LangGraph设计模式,详细讲解了三种核心工作流模式:提示链模式通过顺序分解任务与门控检查提升准确性;路由模式借助智能分类实现专业化任务分流;并行模式同时处理多个子任务以提升效率。
2025-12-26 17:51:02
691
原创 LangGraph1.0速通指南(三)—— LangGraph1.0 自动邮件处理智能体实战
本文通过构建自动邮件处理智能体,系统演示了LangGraph1.0的状态管理、条件路由、人在回路等核心机制在实战中的应用。相信大家经过实战,能更加掌握LangGraph1.0编写智能体的核心技巧。
2025-12-24 08:20:43
923
原创 LangGraph1.0速通指南(二)—— LangGraph1.0 条件边、记忆、人在回路
本期文章深入讲解了 LangGraph 1.0 的三大进阶功能:通过 Command 对象实现节点内路由、通过检查点实现记忆、通过中断实现人在回路。这些功能为构建复杂可控且具备记忆的智能体提供强大支持
2025-12-21 17:30:00
931
原创 LangGraph1.0速通指南(一)—— LangGraph1.0 核心概念、点、边
LangGraph是开发复杂可靠AI应用的强大底层框架,本期内容分享了其核心概念,通过节点与边编排工作流,由状态统一管理数据,并依靠Reducer机制处理并发更新,并通过构建图代码实战掌握其基本使用。
2025-12-18 00:17:29
852
原创 轻松搞定年度报告可视化,五分钟用 AntV + Trae Solo 快速构建智能图表生成器!
本文分享了利用AntV Infographic可视化引擎,通过声明式配置快速生成精美信息图。同时结合Trae Solo与Vibe Coding方法,构建智能体实现自然语言描述自动转换为图表的生成器。
2025-12-10 19:51:52
1043
原创 LangChain1.0实战之多模态RAG系统(四)——Trae Solo搭建部署多模态RAG前端(附AI编程实践指南)
本篇分享笔者系统系统总结并验证了行之有效的Vibe Coding编程方法论,展示了如何利用 Trae Solo,高效构建多模态 RAG 系统的前端界面,完成了整个多模态RAG系统全栈应用的闭环。
2025-12-08 11:55:06
1114
原创 全网最通俗易懂DeepSeek-Math-V2与DeepSeek-V3.2核心知识点解析
本文以通俗易懂语言深度解析DeepSeek近期两大突破:Math-V2首创“自验证训练法”,自我博弈极大提升数学推理能力。V3.2整合可扩展GRPO框架与海量Agent数据,跻身全球顶尖开源模型行列。
2025-12-05 08:22:42
829
原创 Chatbox支持接入LangGraph智能体?一切都靠Trae Solo!
本期笔者借助 Trae Solo快速实现了将LangChain智能体接入Chatbox客户端的完整流程。这不仅为智能体提供了一个轻量、便捷的调用入口,也亲身感受到了“自然语言驱动开发”的高效与直观。
2025-12-02 12:41:42
627
原创 LangChain1.0实战之多模态RAG系统(三)——多模态RAG系统PDF解析功能实现
本文分享了基于LangChain的PDF文档处理的全流程,涵盖PDF解析、文本分块、引用溯源等核心技术,并通过完整代码示例展示了如何实现具备文档引用功能的问答系统,为构建实用化多模态RAG应用提供指导
2025-12-01 09:26:00
891
原创 低代码Agent开发框架使用指南(八)—Coze 知识库详解
本文详细分享了Coze知识库的基础知识与使用指南,作为一套集存储、管理、检索与应用于一体的知识管理解决方案,用户需要深入理解Coze知识库功能特性,结合具体应用,为智能体的能力扩充提供了强有力的支持
2025-11-28 13:10:17
885
原创 LangChain1.0实战之多模态RAG系统(二)——多模态RAG系统图片分析与语音转写功能实现
本期分享通过集成全模态大模型的能力,成功构建了支持图片和音频分析的多模态 RAG 系统。这种端到端的解决方案大大简化了传统多模态处理的复杂性,展现了未来大模型技术的发展趋势。
2025-11-25 00:01:42
964
原创 Gemini3.0深度解析,它在重新定义智能,会是前端工程师噩梦吗?
谷歌发布新一代大模型Gemini 3.0,在多模态基准测试中以37.5%准确率领先GPT-5.1。该模型特别强化了编程能力,支持100万tokens上下文和64k tokens单次输出,可实现从自然语言到完整应用的自动转换。通过Google AI Studio演示,Gemini 3.0能构建定制化聊天应用甚至复刻MacOS界面,展现了以智能体为核心的未来开发范式。这种高度自动化的编程流程,预示着开发者工作方式的重大变革。
2025-11-20 18:06:38
891
原创 LangChain1.0实战之多模态RAG系统(一)——多模态RAG系统核心架构及智能问答功能开发
本文系统介绍了基于LangChain 1.0开发多模态RAG系统的核心架构,通过前后端分离架构,构建支持文本、图像、音频和PDF处理的四大功能模块。同时编写完成智能问答基础模块的开发工作,实现了对话历史管理和流式响应,并使用Postman完成接口测试验证。本实战项目为后续扩展更复杂的多模态应用奠定了坚实基础。下一期笔者将分享如何实现图片分析和语音转写相关工作,大家敬请期待~
2025-11-18 12:04:46
944
1
原创 GPT-5.1 核心特性深度解析,它会是模型性能的新标杆吗?
GPT-5.1正式亮相。根据官方报告,新版模型在对话情商、逻辑推理和代码生成等多方面实现了显著提升。本期分享笔者就来和大家一起深度探讨GPT-5.1核心特性。
2025-11-14 01:43:50
764
原创 低代码Agent开发框架使用指南(七)—Coze 数据库详解
Coze 数据库作为 Coze 平台的一个重要组成部分,为 AI 智能体应用开发提供了实用的数据存储和管理能力。它基于自然语言交互,使得数据操作门槛大大降低。同时,它与 Coze 平台的工作流、变量、插件等功能深度集成,可以实现灵活多样的数据应用。此外,笔者还提到可以将数据库与Coze 平台的其他存储能力灵活搭配,构建更加智能化的应用。
2025-11-11 13:16:54
852
原创 LangChain1.0速通指南(三)——LangChain1.0 create_agent api 高阶功能
本篇内容深入分享了 LangChain 1.0 `create_agent` API 的高阶功能,涵盖 MCP 协议工具集成、结构化输出、记忆管理和中间件机制四大核心能力。通过高德地图 MCP 接入、动态模型选择等实战案例,展示了如何构建具备外部工具调用、记忆保持和流程可控的智能体应用。
2025-11-08 11:57:54
1308
原创 LangChain1.0速通指南(二)——LangChain1.0 create_agent api 基础知识
本篇深入解析LangChain 1.0的create_agent API,涵盖智能体三要素消息类型及四种流模式。通过天气助手实例演示智能体完整执行流程,帮助大家快速掌握新一代智能体开发标准。
2025-11-04 19:48:31
2209
原创 LangChain1.0速通指南(一)——LangChain1.0核心升级
LangChain 1.0 发布,核心升级包括:全新智能体构建 API create_agent、标准化接口及精简包结构。这标志着智能体开发从“原型玩具”迈向“生产级框架”,create_agent 通过中间件和结构化输出,显著提升了开发效率与功能上限。
2025-11-02 13:15:00
1554
原创 低代码Agent开发框架使用指南(六)—Coze 变量与长期记忆
本文介绍了Coze平台中变量与长期记忆两大核心功能。变量用于动态存储用户信息;长期记忆则记录对话历史。笔者通过实战示例,展示了如何配置和使用变量和长期记忆提升智能体的服务体验。
2025-10-31 19:06:16
875
原创 LangGraph实战项目:从零手搓DeepResearch(四)——OpenDeepResearch源码解析与本地部署
本文深入解析LangChain官方OpenDeepResearch项目,通过源码分析详细对比Graph工作流与Multi-Agent多智能体两种架构的设计思路与核心节点。从复杂项目中掌握智能体开发技巧
2025-10-29 00:45:17
1170
原创 OCR技术简史: 从深度学习到大模型,最强OCR大模型花落谁家
本篇分享系统梳理了OCR技术的发展脉络,比详细分析DeepSeek-OCR、PaddleOCR、MonkeyOCR等主流模型的架构特点,针对长文档处理、学术资料数字化和边缘计算三大场景提供了实践指南。
2025-10-26 10:15:00
1043
原创 低代码Agent开发框架使用指南(五)—Coze消息卡片详解
本文详解Coze消息卡片功能,涵盖官方单条/列表卡片的配置方法,并演示自定义卡片从布局设计、变量配置到数据绑定循环渲染的全流程。通过NBA新闻助手案例,展示插件数据与卡片模板的融合,实现信息结构化展示
2025-10-23 21:35:27
686
原创 LangGraph实战项目:从零手搓DeepResearch(三)——LangGraph多智能体搭建与部署
本文详细演示了如何利用LangGraph构建包含任务规划、网络搜索和报告生成三个智能体的DeepResearch应用,并完成了前后端一体化部署。通过图结构封装和多节点协同,实现了从问题输入到研究报告生成的全流程自动化。
2025-10-22 08:15:00
1803
原创 LangGraph实战项目:从零手搓DeepResearch(二)——DeepResearch架构设计与实现
本期内容完整分享了如何基于 Pipeline-Agent 架构编写多智能体实现DeepResearch应用,整个系统通过任务规划、网络搜索和报告生成三个核心智能体的协同工作,实现了从问题分析到研究报告生成的完整流程。
2025-10-18 21:00:00
1295
原创 低代码Agent开发框架使用指南(四)—Coze大模型和插件参数配置最佳实践
本篇分享系统讲解了Coze平台大模型与插件的核心配置方法。在模型配置方面,详细解析了模型选择、生成多样性参数及输入输出设置。在人设配置环节,提出了结构化提示词模板,并通过电商客服案例演示了完整配置流程。插件使用部分,介绍了两种调用方式和五项核心功能,总结了“功能专注、精简化选择、避免重复”三大最佳实践,帮助开发者快速构建功能完善、交互自然的AI智能体。
2025-10-15 17:53:39
1432
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅