题目描述
给你一根长度为n的绳子,请把绳子剪成整数长的m段(m、n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],…,k[m]。请问k[0]xk[1]x…xk[m]可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
输入描述:
输入一个数n,意义见题面。(2 <= n <= 60)
输出描述:
输出答案。
-
题目分析:
-
先举几个例子,可以看出规律来。
-
4 : 2*2
-
5 : 2*3
-
6 : 3*3
-
7 : 223 或者4*3
-
8 : 233
-
9 : 333
-
10:2233 或者43*3
-
11:233*3
-
12:333*3
-
13:22333 或者433*3
-
下面是分析:
-
首先判断k[0]到k[m]可能有哪些数字,实际上只可能是2或者3。
-
当然也可能有4,但是4=2*2,我们就简单些不考虑了。
-
5<23,6<33,比6更大的数字我们就更不用考虑了,肯定要继续分。
-
其次看2和3的数量,2的数量肯定小于3个,为什么呢?因为222<3*3,那么题目就简单了。
-
直接用n除以3,根据得到的余数判断是一个2还是两个2还是没有2就行了。
-
由于题目规定m>1,所以2只能是11,3只能是21,这两个特殊情况直接返回就行了。
-
乘方运算的复杂度为:O(log n),用动态规划来做会耗时比较多。
python
# -*- coding:utf-8 -*-
class Solution:
def cutRope(self, number):
# write code here
if number == 2:
return 1
if number == 3:
return 2
x = number % 3
y = number / 3
if x == 0:
return pow(3,y)
elif x == 1:
return 2 * 2 * pow(3,y-1)
else:
return 2 * pow(3,y)
c++
class Solution {
public:
int cutRope(int number) {
if (number == 2) {
return 1;
}
if (number == 3) {
return 2;
}
int x = number % 3;
int y = number / 3;
if (x == 0) {
return pow(3, y);
} else if (x == 1) {
return 2 * 2 * (long long) pow(3, y - 1);
} else {
return 2 * (long long) pow(3, y);
}
}
};