Deep Stacked Hierarchical Multi-patch Network for Image Deblurring阅读笔记

本文介绍了DMPHN网络,它为解决多尺度去模糊网络的耗时和性能饱和问题,提出了自底向上的处理方式。DMPHN采用堆叠的多块网络结构,通过编码器-解码器对处理图像,减少了去卷积操作,提高了处理速度。网络在不同尺度上处理图像块,并通过级联特征来融合信息,从而实现高效且高质量的去模糊效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

论文代码:https://github.com/HongguangZhang/DMPHN-cvpr19-master
论文地址:https://arxiv.org/pdf/1904.03468.pdf
代码解读:

多尺度去模糊网络的缺点:
  • 由粗到细的网络机制中去卷积/上采样操作消耗运行时间。
  • 在更精细的尺度中简单的增加网络深度并不能提高去模糊的质量
作者做出的改进
  • 为了解决上述问题,作者提出一个分层的 multi-patch 网络,该网络受空间金字塔匹配的启发,由细到粗的处理模糊图像。

为了解决性能饱和问题,作者提出了multi-patch 网络 的stacked版本

Network

作者提出的 Deep Multi-Patch Hierarchical 网络如图所示:

在这里插入图片描述

网络受由粗到细的特征金字塔结构影响,使用场景识别技术整合多个图像块提高性能。与在多尺度和尺度循环网络模型中进行大量的数据处理相反,我们的方法使用了residual-like的架构,因此需要小尺寸的滤波器,从而可以进行快速处理。如图3所示:
在这里插入图片描述

与多尺度网络和递归循环网络不通,本文去掉了跳跃连接和循环连接。另外,不同于多尺度使用去卷积和上采样操作,我们使用特征图级连的方式。

Encoder-decoder Architecture

在这里插入图片描述
DMPHN网络的每一级都由一个编码器和一个解码器组成,其架构如图4所示。我们的编码器由15个卷积层,6个残差连接和6个ReLU组成。 解码器和编码器的层是相同的,只是两个卷积层被反卷积层替换以生成图像。

本文只使用3.6 MB大小的内存存储参数,而 多尺度网络使用了3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值