搭建基于DataX的可视化界面

一、内容简介

DataX 是阿里巴巴集团内被广泛使用的离线数据同步工具/平台,实现包括 MySQL、Oracle、SqlServer、Postgre、HDFS、Hive、ADS、HBase、TableStore(OTS)、MaxCompute(ODPS)、DRDS 等各种异构数据源之间高效的数据同步功能。但是我们在使用的过程中,需要将Json配置文件放到DataX的job路径下,随着业务的增加,配置文件不方便管理和迁移并且每次执行都需要记录命令。 下面介绍搭建基于DataX的可视化界面。

二、部署前准备

1、阿里的开源同步工具datax3.0
2、语言Java 8
3、数据库Mysql5.7
4、datax-web(项目地址:https://github.com/WeiYe-Jing/datax-web)

三、部署步骤

1、安装datax
下载datax

git cloune https://github.com/alibaba/DataX.git

编译datax,这里编译需要maven,安装不再累述

mvn -U clean package assembly:assembly -Dmaven.test.skip=true

编译完成后,可以验证一下

cd DataX/target/datax/datax/bin

python datax.py …/job/job.json

2、安装jdk

yum install java-1.8.0-openjdk

3、安装数据库5.7
下载源

wget https://dev.mysql.com/get/mysql57-community-release-el7-9.noarch.rpm

安装repo

rpm -ivh mysql57-community-release-el7-9.noarch.rpm

安装mysql5.7

yum install mysql-server

4、安装datax-web
下载源码

git clone https://github.com/WeiYe-Jing/datax-web.git

执行sql

cd datax-web/doc/db,在mysql中执行datax_web.sql

修改datax-admin配置文件

vi datax-web/datax-admin/src/main/resources/application.yml
修改上面的数据库配置,改成3步骤中安装的数据库账号密码

修改datax-executor配置文件

vi datax-executor/src/main/resources/application.yml
在这里插入图片描述

四、验证使用

启动datax-admin

java -Xmx1024M -Xms1024M -Xmn448M -XX:MaxMetaspaceSize=192M -XX:MetaspaceSize=192M -jar datax-admin-2.1.0.jar --server.port=8080 >> admin.log &

启动datax-executo

java -Xmx1024M -Xms1024M -Xmn448M -XX:MaxMetaspaceSize=192M -XX:MetaspaceSize=192M -jar datax-executor-2.1.0.jar >> executor.log &

检查端口是否起来

netstat -nuplt
在这里插入图片描述

可以看到已经成功启动,现在在浏览器输入地址查看
http://IP:8080/index.html#/dashboard
默认账号密码为admin/123456

一. DataX3.0 概览  DataX 是一个异构数据源离线同步工具,致力于实现包括关系型数据库(MySQL、Oracle 等)、HDFS、Hive、ODPS、HBase、FTP 等各种异构数据源之间稳定高效的数据同步功能。  设计理念  为了解决异构数据源同步问题,DataX 将复杂的网状的同步链路变成了星型数据链路,DataX 作为中间传输载体负责连接各种数据源。当需要接入一个新的数据源的时候,只需要将此数据源对接到 DataX,便能跟已有的数据源做到无缝数据同步。  当前使用现状  DataX 在阿里巴巴集团内被广泛使用,承担了所有大数据的离线同步业务,并已持续稳定运行了 6 年之久。目前每天完成同步 8w 多道作业,每日传输数据量超过 300TB。  此前已经开源 DataX1.0 版本,此次介绍为阿里巴巴开源全新版本 DataX3.0,有了更多更强大的功能和更好的使用体验。Github 主页地址:https://github.com/alibaba/DataX。  二、DataX3.0 框架设计  DataX 本身作为离线数据同步框架,采用 Framework plugin 架构构建。将数据源读取和写入抽象成为 Reader/Writer 插件,纳入到整个同步框架中。  Reader:Reader 为数据采集模块,负责采集数据源的数据,将数据发送给 Framework。  Writer: Writer 为数据写入模块,负责不断向 Framework 取数据,并将数据写入到目的端。  Framework:Framework 用于连接 reader 和 writer,作为两者的数据传输通道,并处理缓冲,流控,并发,数据转换等核心技术问题。  三. DataX3.0 插件体系  经过几年积累,DataX 目前已经有了比较全面的插件体系,主流的 RDBMS 数据库、NOSQL、大数据计算系统都已经接入。DataX 目前支持数据如下:  DataX Framework 提供了简单的接口与插件交互,提供简单的插件接入机制,只需要任意加上一种插件,就能无缝对接其他数据源。详情请看:DataX 数据源指南  四、DataX3.0 核心架构  DataX 3.0 开源版本支持单机多线程模式完成同步作业运行,本小节按一个 DataX 作业生命周期的时序图,从整体架构设计非常简要说明 DataX 各个模块相互关系。  核心模块介绍:  DataX 完成单个数据同步的作业,我们称之为 Job,DataX 接受到一个 Job 之后,将启动一个进程来完成整个作业同步过程。DataX Job 模块是单个作业的中枢管理节点,承担了数据清理、子任务切分(将单一作业计算转化为多个子 Task)、TaskGroup 管理等功能。  DataXJob 启动后,会根据不同的源端切分策略,将 Job 切分成多个小的 Task (子任务),以便于并发执行。Task 便是 DataX 作业的最小单元,每一个 Task 都会负责一部分数据的同步工作。  切分多个 Task 之后,DataX Job 会调用 Scheduler 模块,根据配置的并发数据量,将拆分成的 Task 重新组合,组装成 TaskGroup (任务组)。每一个 TaskGroup 负责以一定的并发运行完毕分配好的所有 Task,默认单个任务组的并发数量为5。  每一个 Task 都由 TaskGroup 负责启动,Task 启动后,会固定启动 Reader>Channel>Writer 的线程来完成任务。 标签:数据同步
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值