python数学建模导论1.6 动态规划模型的基本思想

python数学建模导论1.6 动态规划模型的基本思想

在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

def dynamic_p() -> list:
    items = [                                   # 物品项
        { "name":'水',"weight":3,"value":10},
        {"name": '书', "weight": 1, "value": 3},
        {"name": "食物", "weight": 2, "value": 9},
        {"name": "小刀","weight": 3, "value": 4},
        {"name": "衣物","value":5, "weight": 2},
        {"name": "手机","weight": 1,"value": 10}
    ]
    max_capacity = 6    # 约束条件为 背包最大承重为6
    dp = [[0] * (max_capacity + 1) for _ in range(len(items) + 1)]
    for row in range(1,len(items)+1):# row 代表行
        for col in range(1, max_capacity+1):# col 代表列
            weight = items[row - 1]["weight"]# 获取当前物品重量
            value = items[row - 1]["value"]# 获取当前物品价值
            if weight > col:# 判断物品重量是否大于当前背包容量
                dp[row][col] = dp[row - 1][col]# 大于直接取上一次最优结果 此时row-1代表上一行
            else:
            # 使用内置函数max(),将上一次最优结果 与 当前物品价值+剩余空间可利用价值 做对比取最大值
                dp[row][col] = max(value + dp[row - 1][col - weight], dp[row - 1][col])
    return dp

dp = dynamic_p()
for i in dp:
    print(i)# 打印数组

print(dp[-1][-1])# 打印最优解的价值和
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值