秦九韶算法

秦九韶算法是中国南宋数学家秦九韶提出的用于求解一元高次多项式的方法,与霍纳算法相似。该算法在《数书九章》中有详细阐述,用于解决二次至十次方程,并展示了如何求解具体实例,如四次和十次方程。秦九韶算法通过反复提取公因子,简化计算,提高了效率,比传统方法需要的加法和乘法次数更少。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

秦九韶算法是中国南宋时期的数学家秦九韶表述求解一元高次多项式的值的算法——正负开方术。它也可以配合牛顿法用来求解一元高次多项式的根。

19世纪初,英国数学家威廉·乔治·霍纳重新发现并证明,后世称作霍纳算法(Horner’s method、Horner scheme)。但是,19世纪英国传教士伟烈亚力 Alexander Wylie. (1815–1887) 最早对霍纳的发明权提出质疑。他在1852年著的《中国科学札记》(Jottings on the Science of the Chinese)一篇论文中,详细介绍秦九韶的正负开方术之后写道“读者不难认出这就是霍纳在1819年因为发表《解所有次方程》论文,被数学家奥古斯都·德·摩根评为‘必使其发明人因发现此算法而置身于重要发明家之列’的方法;我以为应该对霍纳的发明权提出辩驳。欧洲的朋友们可能会觉得意外,一位来自天朝帝国的竞争者,有更大的机会确立他的优先权”。此后,日本数学史家三上义夫在《中日数学史》一书中在详述秦九韶的正负开方术后写道:“谁能否认,霍纳的辉煌方法,至少在早于欧洲六百年之前,已经在中国运用了。”。三上义夫还最先指出,秦九韶算法起源于汉代《九章算术》的开方法。其后王玲和李约瑟有专文论述秦九韶算法起源于《九章算术》。前苏联数学史家尤什克维奇说“这是中国传统数学最伟大成就之一”,他还说印度人不知有此方法,而阿拉伯数学家可能从中国前人传入此方法。

秦九韶程序

南宋数学家秦九韶将贾宪的增乘开方术推广,以求解任意高次方程的实数根的数值解。秦九韶的《数书九章》详细叙述用秦九韶算法求解二十六个二次到十次方程的的实数根的数值解,其中包含二十个二次方程,一个三次方程,四个四次方程和一个十次方程。;其中有些得到精确解;多数得近似解。
《数书九章》“《遥度圆城》”题列出一个十次方程,求解圆城的直径:
数书九章》“《兴田求积》”题列出一个四次方程,
− x 10 + 15 x 8 + 72 x 6 − 864 x 4 − 11664 x 2 − 34992 = 0 {\displaystyle -x^{10}+15x^8+72x^6-864x^4-11664x^2-34992=0} x10+15x8+72x6864x411664x234992=0 ,得精确解x=3

− x 4 + 763200 x 2 − 40642560000 = 0 − x 4 + 763200 x 2 − 40642560000 = 0 {\displaystyle -x^{4}+763200x^{2}-40642560000=0}-x^4+763200x^2-40642560000=0 x4+763200x240642560000=0x4+763200x240642560000=0

将方程式写成一般式 − x 4 + 0 x 3 + 763200 x 2 + 0 x − 40642560000 = 0 {\displaystyle -x^{4}+0x^{3}+763200x^{2}+0x-40642560000=0} x4+0x3+763200x2+0x40642560000=0
第一次估根~800;作y=x-800减根代换,估出根的第二位数字为y=40;经过第二次减根代换z=y-40后常数项抵消为0;得精确解 y=40;x=800+y=800+40=840。右图为用阿拉伯数字表示的解此四次方程的秦九韶程序图(c’、d’、e’是运算过程中的临时数,最终分别并入c、d、e)

《数书九章》“《环田三积》”题列出另一个四次方程,

− x 4 + 15245 x 2 − 6262506.25 = 0 − x 4 + 15245 x 2 − 6262506.25 = 0 {\displaystyle -x^{4}+15245x^{2}-6262506.25=0} -x^4+15245x^2-6262506.25=0 x4+15245x26262506.25=0x4+15245x26262506.25=0右图为秦九韶解下列四次方程的程序
− x 4 + 15245 x 2 − 6262506.25 = 0 − x 4 + 15245 x 2 − 6262506.25 = 0 {\displaystyle -x^{4}+15245x^{2}-6262506.25=0} -x^4+15245x^2-6262506.25=0 x4+15245x26262506.25=0x4+15245x26262506.2<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值