UVA1434--Wilson证明

UVA1434

这题的筛素数环节dalao们都已经讲清楚了

而另一个难点 ⇒ \Rightarrow

Wilson定理 我在这里给出证明:

(数竞党必备)

多项式大法!

前置技能一:Fermat定理

p为素数, x p − 1 ≡ 1 ( m o d p ) x^{p-1}\equiv1(modp) xp11(modp)

用缩系易证

前置技能二:Lagrange定理

p为素数, f ( x ) = a n x n + a n − 1 x n − 1 + . . . + a 1 x + a 0 f(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+...+a_{1}x+a_{0} f(x)=anxn+an1xn1+...+a1x+a0

其中(p, a n a_{n} an)=1,则f(x)$\equiv$0(modp)最多有n个解

(注: c 1 ≡ c 2 c_{1}\equiv c_{2} c1c2(modp)算作相同解)

Lagrange归纳法可证,再次不再赘述

推论:若有多于n个解,则 a n ≡ a n − 1 ≡ . . . ≡ a 0 ≡ 0 ( m o d p ) a_{n}\equiv a_{n-1}\equiv...\equiv a_{0}\equiv 0(modp) anan1...a00(modp)

下面,就来证明Wilson定理

p=2时显然成立

当p为奇素数时,由Fermat, x p − 1 ≡ 1 ( m o d p ) x^{p-1}\equiv1(modp) xp11(modp)有1,2,…n-1这n-1个解

∴ f ( x ) = ( x p − 1 − 1 ) − ( x − 1 ) ( x − 2 ) . . . ( x − ( p − 1 ) ) \therefore f(x)=(x^{p-1}-1)-(x-1)(x-2)...(x-(p-1)) f(x)=(xp11)(x1)(x2)...(x(p1))显然也有这p-1个解

∵ f ( x ) \because f(x) f(x) 的次数小于p-2,由Lagrange推论

f(x)的所有系数均为p的倍数

∴ \therefore 常数项也是p的倍数

∴ ( p − 1 ) ! + 1 ≡ 0 ( m o d p ) \therefore (p-1)!+1\equiv0(modp) (p1)!+10(modp),证毕!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值