SparkStreaming编程与Queue测试流

30 篇文章 1 订阅

一、StreamingContext如何创建?如何使用?

    创建:  ①基于SparkConf和Duration
            ②基于SparkContext和Duration
            ③基于masterurl,appname,和Duration
            
    使用:  ①构造StreamingContext对象
            ②根据数据源,构造DStream
            ③对DStream进行各种转换(运算)
            ④开启app,执行运算  StreamingContext.start()
            ⑤流式应用,因此启动后,需要一直运行,阻塞当前driver的启动线程,
                    StreamingContext.awaitTermination
            ⑥在需要关闭时,
                       StreamingContext.stop()

二、pom依赖

<dependencies>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.12</artifactId>
            <version>3.0.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming_2.12</artifactId>
            <version>3.0.0</version>
        </dependency>

    </dependencies>

三、代码

package com.saprkstreaming

import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.{Seconds, StreamingContext}

object WordCount {
   
  /* StreamingContext:
        ① 使用SparkStreaming为核心入口,用来从多种不同数据源构造DStream
     Duration:应用每批数据的采集间隔,采集周期
            Milliseconds
            Seconds
            Minutes
             使用上述的apply方法构造
   */
    def main(args: Array[String]): Unit = {
  
      //创建StreamingContext,每3s采集一批数据
      val context: StreamingContext = new StreamingContext("local[*]","sc",Seconds(3))
      
      //执行DStream的构造(根据数据来源构造)和转换
      //如果调用的是rdd中的方法,称为算子(转换算子,行动算子)
      //如果调用DStream中的方法,称为抽象原语
      val ds = context.socketTextStream("hadoop102",3333)
    
      //对DStream中数据进行转换
      val result: DStream[(String, Int)] = ds.flatMap(x=>x.split(" ")).map((_,1)).reduceByKey(_+_)
  
      //输出结果,可以保存到文件,也可以在屏幕打印
      result.print(100)
  
      //启动应用
      context.start()
      
      //阻塞当前进程,防止运行结束关闭
      //一直阻塞当前进程,直到app手动调用了stop或者由于异常终止
      context.awaitTermination()
  
  }
}

三、测试

在linux中开放端口进行测试

[hadoop@hadoop102 ~]$ nc -lk hadoop102 3333
a b c d
h l

输出结果
在这里插入图片描述

四、创建QueueStream流进行逻辑测试

package com.saprkstreaming

import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.dstream.{DStream, InputDStream}
import scala.collection.mutable

/*
      从队列中获取DS,主要用于测试程序的逻辑是否有问题!!!

      def queueStream[T: ClassTag](
          queue: Queue[RDD[T]],  //Queue中必须存放的是一个个RDD
          oneAtATime: Boolean = true   //每个采集周期是否只从Queue中消费一个RDD
      ): InputDStream[T]
 */

object QueueExec {
  
  def main(args: Array[String]): Unit = {
  
    //创建StreamingContext,每3s采集一批数据
    val context: StreamingContext = new StreamingContext("local[*]","sc",Seconds(3))
    
    //将源源不断的数据存放到RDD中,模拟从queue中获取流式数据
    val queue= mutable.Queue[RDD[String]]()
    
    //获取一个queueStream流
    val ds: InputDStream[String] = context.queueStream(queue,false)
   
    //对DStream中数据进行转换
    val result: DStream[(String, Int)] = ds.flatMap(x=>x.split(" ")).map((_,1)).reduceByKey(_+_)
  
    //输出结果,可以保存到文件,也可以在屏幕打印
    result.print(100)
  
    //启动应用
    context.start()
    
    
    val list: List[String] = List("a b c","b c d")
    
    //获取当前应用的SparkContext
    val rdd: RDD[String] = context.sparkContext.makeRDD(list)
    
    //模拟数据源源不断的产生
    for (i <- 1 to 1000){
      queue.enqueue(rdd)
      Thread.sleep(1000)
    }
    
  
    //阻塞当前进程,防止运行结束关闭
    //一直阻塞当前进程,直到app手动调用了stop或者由于异常终止
    context.awaitTermination()
    
  } 
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值