代码随想录算法训练营第十一天|20.有效的括号、1047. 删除字符串中的所有相邻重复项、150. 逆波兰表达式求值

代码随想录算法训练营第十一天|20.有效的括号、1047. 删除字符串中的所有相邻重复项、150. 逆波兰表达式求值

20.有效的括号

给定一个只包括 '('')''{''}''['']' 的字符串 s ,判断字符串是否有效。

有效字符串需满足:

  1. 左括号必须用相同类型的右括号闭合。
  2. 左括号必须以正确的顺序闭合。
  3. 每个右括号都有一个对应的相同类型的左括号。

示例 1:

输入:s = "()"
输出:true

示例 2:

输入:s = "()[]{}"
输出:true

示例 3:

输入:s = "(]"
输出:false

思路

首先有三种括号不匹配的情况

  1. 左括号多了

https://code-thinking-1253855093.file.myqcloud.com/pics/2020080915505387.png

  1. 括号数量正常,类型没匹配

https://code-thinking-1253855093.file.myqcloud.com/pics/20200809155107397.png

  1. 右括号多余

https://code-thinking-1253855093.file.myqcloud.com/pics/20200809155115779.png

具体的动画如下:

https://code-thinking.cdn.bcebos.com/gifs/20.有效括号.gif

对应的代码如下:

class Solution {
public:
    bool isValid(string s) {
        // 如果size为奇数,直接返回false
        if(s.size()%2 != 0) return false;
        // 定义栈 
        stack<char> st;
        // 遍历字符串
        for(int i = 0; i < s.size() ; i++){
            if(s[i] == '('){
                st.push(')'); // 添加对应括号
            }else if(s[i] == '{'){
                st.push('}'); // 添加对应括号
            }else if(s[i] == '['){
                st.push(']'); // 添加对应括号
            }else if(st.empty() || st.top()!=s[i])
            // st.empty()对应右括号多的情况
            // st.top()!=s[i]对应类型匹配不上的情况
            {
                return false;
            }else {
                st.pop();
            }
        }
        // 如果st不为空则说明左括号多了
        return st.empty();
    }
};
  • 时间复杂度: O(n)
  • 空间复杂度: O(n)

1047. 删除字符串中的所有相邻重复项

给出由小写字母组成的字符串 S重复项删除操作会选择两个相邻且相同的字母,并删除它们。

在 S 上反复执行重复项删除操作,直到无法继续删除。

在完成所有重复项删除操作后返回最终的字符串。答案保证唯一。

示例:

输入:"abbaca"
输出:"ca"
解释:
例如,在 "abbaca" 中,我们可以删除 "bb" 由于两字母相邻且相同,这是此时唯一可以执行删除操作的重复项。之后我们得到字符串 "aaca",其中又只有 "aa" 可以执行重复项删除操作,所以最后的字符串为 "ca"。

思路

本题依然通过栈的数据结构完成,具体做法是遍历字符串,然后将字符串放到栈中,每当遍历新的字符串的时候,看看栈的top元素是否等于当前元素,如果相等,消除栈的top元素

具体示意图如下:

https://code-thinking.cdn.bcebos.com/gifs/1047.删除字符串中的所有相邻重复项.gif

具体代码如下:

class Solution {
public:
    string removeDuplicates(string S) {
        stack<char> st;
        for(char s:S){
            // 如果st为空 或者 遍历值不等于栈的top
            if(st.empty()||s!=st.top()){
                // 入栈
                st.push(s);
            }else{
                // 说明s == st.top
                // 出栈
                st.pop();
            }
        }
        string result = "";
        while(!st.empty()){
            // 添加字符到result中
            result += st.top();
            // 出栈
            st.pop();
        }
        reverse(result.begin(), result.end());
        return result;
    }
};
  • 时间复杂度: O(n)
  • 空间复杂度: O(n)

150. 逆波兰表达式求值

给你一个字符串数组 tokens ,表示一个根据 逆波兰表示法 表示的算术表达式。

请你计算该表达式。返回一个表示表达式值的整数。

示例 1:

输入:tokens = ["2","1","+","3","*"]
输出:9
解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9

示例 2:

输入:tokens = ["4","13","5","/","+"]
输出:6
解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6

示例 3:

输入:tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"]
输出:22
解释:该算式转化为常见的中缀算术表达式为:
  ((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22

具体流程如下:

https://code-thinking.cdn.bcebos.com/gifs/150.逆波兰表达式求值.gif

具体代码如下:

class Solution {
public:
    int evalRPN(vector<string>& tokens) {
        stack<long long> st;
        for(int i = 0; i < tokens.size(); i++){
            if(tokens[i] == "+" || tokens[i] == "-" || tokens[i] == "*" || tokens[i] == "/"){
                long long num1 = st.top();
                st.pop();
                long long num2 = st.top();
                st.pop();
                if(tokens[i] == "+"){
                    st.push(num2 + num1);
                }
                if(tokens[i] == "-"){
                    st.push(num2 - num1);
                }
                if(tokens[i] == "*"){
                    st.push(num2 * num1);
                }
                if(tokens[i] == "/"){
                    st.push(num2 / num1);
                }
            }else{
                st.push(stoll(tokens[i]));
            }
        }
        int result = st.top();
        st.pop();
        return result;
    }
};
  • 时间复杂度: O(n)
  • 空间复杂度: O(n)

📎 参考文章

代码随想录0020.有效的括号

代码随想录1047.删除字符串中的所有相邻重复项

代码随想录0150.逆波兰表达式求值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值