LRU缓存机制
运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制。它应该支持以下操作: 获取数据 get 和 写入数据 put 。
获取数据 get(key) - 如果密钥 (key) 存在于缓存中,则获取密钥的值(总是正数),否则返回 -1。
写入数据 put(key, value) - 如果密钥已经存在,则变更其数据值;如果密钥不存在,则插入该组「密钥/数据值」。当缓存容量达到上限时,它应该在写入新数据之前删除最久未使用的数据值,从而为新的数据值留出空间。
进阶:
你是否可以在 O(1) 时间复杂度内完成这两种操作?
示例:
LRUCache cache = new LRUCache( 2 /* 缓存容量 */ );
cache.put(1, 1);
cache.put(2, 2);
cache.get(1); // 返回 1
cache.put(3, 3); // 该操作会使得密钥 2 作废
cache.get(2); // 返回 -1 (未找到)
cache.put(4, 4); // 该操作会使得密钥 1 作废
cache.get(1); // 返回 -1 (未找到)
cache.get(3); // 返回 3
cache.get(4); // 返回 4
哈希+双向链表
其中哈希由unordered_map实现,映射key和链表iterator
class LRUCache {
private:
int cap;
list<pair<int,int> > cache;
// 像map、set这种数据结构,删除或者插入iterator不会失效
unordered_map<int, list<pair<int,int>>::iterator> map;
public:
LRUCache(int capacity) {
this->cap = capacity;
}
int get(int key) {
unordered_map<int, list<pair<int,int>>::iterator>::iterator mapIt;
// 找到对应的位置
mapIt = map.find(key);
// 找不到就返回
if(mapIt==map.end()) return -1;
// 根据迭代器获得对象
pair<int,int> p = *map[key];
// 更新在cache中的位置
cache.erase(map[key]);
cache.push_front(p);
// 更新映射表
map[key] = cache.begin();
return p.second;
}
void put(int key, int value) {
auto it = map.find(key);
pair<int,int> p;
if(it==map.end()) {
if(cache.size()==cap) {
p = cache.back();
cache.pop_back();
map.erase(p.first);
}
p = make_pair(key, value);
cache.push_front(p);
map[key] = cache.begin();
}
else {
p = *map[key];
p.second = value;
cache.erase(map[key]);
cache.push_front(p);
map[key] = cache.begin();
}
}
};
/**
* Your LRUCache object will be instantiated and called as such:
* LRUCache* obj = new LRUCache(capacity);
* int param_1 = obj->get(key);
* obj->put(key,value);
*/