代码随想录算法训练营第四十六天| 139.单词拆分、多重背包、背包问题总结

文章讨论了如何使用动态规划解决不同类型的背包问题,包括01背包、完全背包和多重背包。通过定义dp数组,利用递推公式来确定是否能将字符串拆分为字典中的单词,以及如何选择物品以达到最大价值或最小数量。同时,文章强调了遍历顺序对结果的影响。
摘要由CSDN通过智能技术生成

单词拆分

题目链接:力扣

  1. 确定dp数组以及下标的含义
    dp[i] : i为字符串长度,dp[i]为true,表示可以拆分为一个或多个在字典中出现的单词。
  2. 确定递推公式
    如果确定dp[j] 是true,且 [j, i] 这个区间的子串出现在字典里,那么dp[i]一定是true(j < i )。所以递推公式是 if([j, i] 这个区间的子串出现在字典里 && dp[j]是true) 那么 dp[i] = true。
  3. dp数组如何初始化
    dp[0]一定要为true,否则递推下去后面都都是false了。
    下标非0的dp[i]初始化为false,只要没有被覆盖说明都是不可拆分为一个或多个在字典中出现的单词。
  4. 确定遍历顺序

    本题其实求排列数,
    例如 s = "applepenapple", wordDict = ["apple", "pen"] 举例。
    "apple", "pen" 是物品,物品的组合是 "apple" + "pen" + "apple" 才能组成 "applepenapple"。
    "apple" + "apple" + "pen" 或者 "pen" + "apple" + "apple" 是不可以的,那么我们就是强调物品之间顺序。
    所以,本题一定是 先遍历 背包,再遍历物品。

  5. 举例推导dp[i]
class Solution {
public:
    bool wordBreak(string s, vector<string>& wordDict) {

        unordered_set<string> wordSet(wordDict.begin(), wordDict.end());
        vector<bool> dp(s.size() + 1, false);
        dp[0] = true;
        for (int i = 1; i <= s.size(); i++) {   // 遍历背包
            for (int j = 0; j < i; j++) {       // 遍历物品
                string word = s.substr(j, i - j); //substr(起始位置,截取的个数)
                if (wordSet.find(word) != wordSet.end() && dp[j]) {
                    dp[i] = true;
                }
            }
        }
        return dp[s.size()];

    }
};

 多重背包

有N种物品和一个容量为V 的背包。
第i种物品最多有Mi件可用,每件耗费的空间是Ci ,价值是Wi 。
求解将哪些物品装入背包可使这些物品的耗费的空间 总和不超过背包容量,且价值总和最大。 

多重背包和01背包非常像,每件物品最多有Mi件可用,把Mi件摊开,其实就是一个01背包问题。

例如:
背包最大重量为10。

物品为:

重量价值数量
物品01152
物品13203
物品24302

则与下列展开的方式等价:

重量价值数量
物品01151
物品01151
物品13201
物品13201
物品13201
物品24301
物品24301

从而转成了一个01背包问题了,且每个物品只用一次。

void test_multi_pack() {
    vector<int> weight = {1, 3, 4};
    vector<int> value = {15, 20, 30};
    vector<int> nums = {2, 3, 2};
    int bagWeight = 10;
    for (int i = 0; i < nums.size(); i++) {
        while (nums[i] > 1) { // nums[i]保留到1,把其他物品都展开
            weight.push_back(weight[i]);
            value.push_back(value[i]);
            nums[i]--;
        }
    }

    vector<int> dp(bagWeight + 1, 0);
    for(int i = 0; i < weight.size(); i++) { // 遍历物品
        for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
            dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
        }
        for (int j = 0; j <= bagWeight; j++) {
            cout << dp[j] << " ";
        }
        cout << endl;
    }
    cout << dp[bagWeight] << endl;

}
int main() {
    test_multi_pack();
}

背包问题总结

背包递推公式

问能否能装满背包(或者最多装多少):
dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]); ,对应题目如下:

问装满背包有几种方法:dp[j] += dp[j - nums[i]] ,对应题目如下:

问背包装满最大价值:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]); ,对应题目如下:

问装满背包所有物品的最小个数:dp[j] = min(dp[j - coins[i]] + 1, dp[j]); ,对应题目如下:

遍历顺序
01背包

二维dp数组01背包先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。

一维dp数组01背包只能先遍历物品再遍历背包容量,且第二层for循环是从大到小遍历。

完全背包

纯完全背包的一维dp数组实现,先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。

如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品。

相关题目如下:

如果求最小数,那么两层for循环的先后顺序就无所谓了,相关题目如下:

 

代码随想录算法训练营是一个优质的学习和讨论平台,提供了丰富的算法训练内容和讨论交流机会。在训练营中,学员们可以通过观看视频讲解来学习算法知识,并根据讲解内容进行刷题练习。此外,训练营还提供了刷题建议,例如先看视频、了解自己所使用的编程语言、使用日志等方法来提高刷题效果和语言掌握程度。 训练营中的讨论内容非常丰富,涵盖了各种算法知识点和解题方法。例如,在第14训练营中,讲解了二叉树的理论基础、递归遍历、迭代遍历和统一遍历的内容。此外,在讨论中还分享了相关的博客文章和配图,帮助学员更好地理解和掌握二叉树的遍历方法。 训练营还提供了每日的讨论知识点,例如在第15的讨论中,介绍了层序遍历的方法和使用队列来模拟一层一层遍历的效果。在第16的讨论中,重点讨论了如何进行调试(debug)的方法,认为掌握调试技巧可以帮助学员更好地解决问题和写出正确的算法代码。 总之,代码随想录算法训练营是一个提供优质学习和讨论环境的平台,可以帮助学员系统地学习算法知识,并提供了丰富的讨论内容和刷题建议来提高算法编程能力。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [代码随想录算法训练营每日精华](https://blog.csdn.net/weixin_38556197/article/details/128462133)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值