LeetCode-动态规划(斐波那契数、爬楼梯)

动态规划五部曲:

  1. 确定dp数组以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

509. 斐波那契数

代码:

class Solution {	//509. 斐波那契数
	//1. 确定dp数组以及下标的含义: dp[i]为第i个数的斐波那契数列是dp[i]
	//2. 确定递推公式:dp[i]=dp[i-1]+dp[i-2];
	//3. dp数组如何初始化:dp[0]=0,dp[1]=1
	//4. 确定遍历顺序:dp[i]依赖dp[i-1]和dp[i-2],所以是从前往后遍历的
	//5. 举例推导dp数组: n=10时,数列为0,1,1,2,3,5,8,13,21,34,55
public:
	int fib(int n) {
		if (n <= 1)return n;
		vector<int> dp(n+1);
		dp[0] = 0; 
		dp[1] = 1;
		for (int i = 2; i <= n; i++) { // 注意i是从2开始的
			dp[i] = dp[i - 1] + dp[i - 2];
		}
		return dp[n];
	}
};

70. 爬楼梯

代码:

class Solution {	//70. 爬楼梯
public:
	//1. 确定dp数组以及下标的含义: dp[i]为爬到第i个层台阶有dp[i]种方法
	//2. 确定递推公式:爬到第i层台阶可以从第i-1层台阶跳一步上去,也可以从第i-2层台阶跳两步上去,所以 dp[i]=dp[i-1]+dp[i-2];
	//3. dp数组如何初始化:dp[1]=1,dp[2]=2
	//4. 确定遍历顺序:dp[i]依赖dp[i-1]和dp[i-2],所以是从前往后遍历的
	//5. 举例推导dp数组: n=5时,数列为1,2,3,5,8
	int climbStairs(int n) {
		if (n <= 1)return n;
		vector<int> dp(n+1);
		dp[1] = 1; 
		dp[2] = 2;
		for (int i = 3; i <= n; i++) { // 注意i是从3开始的
			dp[i] = dp[i - 1] + dp[i - 2];
		}
		return dp[n];
	}
};

参考资料:

代码随想录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海螺蜜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值