leetcode 动态规划(斐波那契数列、 爬楼梯、使用最小花费爬楼梯)

文章探讨了斐波那契数列的计算方法,以及如何通过动态规划解决爬楼梯问题,包括不同版本的代码实现,如空间复杂度为O(n)、O(3)和O(1)。同时介绍了如何用动态规划求解最小花费爬楼梯问题。
摘要由CSDN通过智能技术生成

509. 斐波那契数

斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n > 1 给你n ,请计算 F(n) 。

示例 1:

输入:2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1
示例 2:

输入:3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2
示例 3:

输入:4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3
提示:

0 <= n <= 30

动态规划(版本一)

class Solution:
    def fib(self, n: int) -> int:
       
        # 排除 Corner Case
        if n == 0:
            return 0
        
        # 创建 dp table 
        dp = [0] * (n + 1)

        # 初始化 dp 数组
        dp[0] = 0
        dp[1] = 1

        # 遍历顺序: 由前向后。因为后面要用到前面的状态
        for i in range(2, n + 1):

            # 确定递归公式/状态转移公式
            dp[i] = dp[i - 1] + dp[i - 2]
        
        # 返回答案
        return dp[n]

动态规划(版本二)

class Solution:
    def fib(self, n: int) -> int:
        if n <= 1:
            return n
        
        dp = [0, 1]
        
        for i in range(2, n + 1):
            total = dp[0] + dp[1]
            dp[0] = dp[1]
            dp[1] = total
        
        return dp[1]

动态规划(版本三)

class Solution:
    def fib(self, n: int) -> int:
        if n <= 1:
            return n
        
        prev1, prev2 = 0, 1
        
        for _ in range(2, n + 1):
            curr = prev1 + prev2
            prev1, prev2 = prev2, curr
        
        return prev2

递归(版本一)

class Solution:
    def fib(self, n: int) -> int:
        if n < 2:
            return n
        return self.fib(n - 1) + self.fib(n - 2)

70. 爬楼梯

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1:

输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1 阶 + 1 阶
2 阶
示例 2:

输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1 阶 + 1 阶 + 1 阶
1 阶 + 2 阶
2 阶 + 1 阶

动态规划(版本一)

空间复杂度为O(n)版本

class Solution:
    def climbStairs(self, n: int) -> int:
        if n <= 1:
            return n
        
        dp = [0] * (n + 1)
        dp[1] = 1
        dp[2] = 2
        
        for i in range(3, n + 1):
            dp[i] = dp[i - 1] + dp[i - 2]
        
        return dp[n]

动态规划(版本二)

空间复杂度为O(3)版本

class Solution:
    def climbStairs(self, n: int) -> int:
        if n <= 1:
            return n
        
        dp = [0] * 3
        dp[1] = 1
        dp[2] = 2
        
        for i in range(3, n + 1):
            total = dp[1] + dp[2]
            dp[1] = dp[2]
            dp[2] = total
        
        return dp[2]

动态规划(版本三)

空间复杂度为O(1)版本

class Solution:
    def climbStairs(self, n: int) -> int:
        if n <= 1:
            return n
        
        prev1 = 1
        prev2 = 2
        
        for i in range(3, n + 1):
            total = prev1 + prev2
            prev1 = prev2
            prev2 = total
        
        return prev2

746. 使用最小花费爬楼梯

旧题目描述:

数组的每个下标作为一个阶梯,第 i 个阶梯对应着一个非负数的体力花费值 cost[i](下标从 0 开始)。

每当你爬上一个阶梯你都要花费对应的体力值,一旦支付了相应的体力值,你就可以选择向上爬一个阶梯或者爬两个阶梯。

请你找出达到楼层顶部的最低花费。在开始时,你可以选择从下标为 0 或 1 的元素作为初始阶梯。

示例 1:

输入:cost = [10, 15, 20]
输出:15
解释:最低花费是从 cost[1] 开始,然后走两步即可到阶梯顶,一共花费 15 。
示例 2:

输入:cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
输出:6
解释:最低花费方式是从 cost[0] 开始,逐个经过那些 1 ,跳过 cost[3] ,一共花费 6 。
提示:

cost 的长度范围是 [2, 1000]。
cost[i] 将会是一个整型数据,范围为 [0, 999] 。

动态规划(版本一)

class Solution:
    def minCostClimbingStairs(self, cost: List[int]) -> int:
        dp = [0] * (len(cost) + 1)
        dp[0] = 0  # 初始值,表示从起点开始不需要花费体力
        dp[1] = 0  # 初始值,表示经过第一步不需要花费体力
        
        for i in range(2, len(cost) + 1):
            # 在第i步,可以选择从前一步(i-1)花费体力到达当前步,或者从前两步(i-2)花费体力到达当前步
            # 选择其中花费体力较小的路径,加上当前步的花费,更新dp数组
            dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2])
        
        return dp[len(cost)]  # 返回到达楼顶的最小花费

动态规划(版本二)

class Solution:
    def minCostClimbingStairs(self, cost: List[int]) -> int:
        dp0 = 0  # 初始值,表示从起点开始不需要花费体力
        dp1 = 0  # 初始值,表示经过第一步不需要花费体力
        
        for i in range(2, len(cost) + 1):
            # 在第i步,可以选择从前一步(i-1)花费体力到达当前步,或者从前两步(i-2)花费体力到达当前步
            # 选择其中花费体力较小的路径,加上当前步的花费,得到当前步的最小花费
            dpi = min(dp1 + cost[i - 1], dp0 + cost[i - 2])
            
            dp0 = dp1  # 更新dp0为前一步的值,即上一次循环中的dp1
            dp1 = dpi  # 更新dp1为当前步的最小花费
        
        return dp1  # 返回到达楼顶的最小花费

动态规划(版本三)

class Solution:
    def minCostClimbingStairs(self, cost: List[int]) -> int:
        dp = [0] * len(cost)
        dp[0] = cost[0]  # 第一步有花费
        dp[1] = cost[1]
        for i in range(2, len(cost)):
            dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i]
        # 注意最后一步可以理解为不用花费,所以取倒数第一步,第二步的最少值
        return min(dp[-1], dp[-2])

动态规划(版本四)

class Solution:
    def minCostClimbingStairs(self, cost: List[int]) -> int:
        n = len(cost)
        prev_1 = cost[0]  # 前一步的最小花费
        prev_2 = cost[1]  # 前两步的最小花费
        for i in range(2, n):
            current = min(prev_1, prev_2) + cost[i]  # 当前位置的最小花费
            prev_1, prev_2 = prev_2, current  # 更新前一步和前两步的最小花费
        return min(prev_1, prev_2)  # 最后一步可以理解为不用花费,取倒数第一步和第二步的最少值
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值