一、列表生成式
1、for只控制循环的次数,而for前面的变量决定着数据的内容,这就叫做列表生成式
二、生成器(保存的是算法,generator)
1、生成器的特点:只是保存了生成列表数的一个算法,什么时候需要用,就next() 调用。
(1)创建生成器方法1:
只要把一个列表生成式的 [ ] 改成 ( )
调用:
① 直接next(a)一点一点的调用
② for in 循环
(2)创建生成器的方法2: 在函数中加上yield
斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:
a,b = 0,1
a,b = b,a
1, 1, 2, 3, 5, 8, 13, 21, 34, ...
斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:用生成器
改进:要想一次性得到值,并且超过range的范围不报错。
总结:
1、只要添加yield的函数,就变成生成器了。
2、生成器它有一个特点,你如果按着原先的方式进行调用的话,它不会执行的,而返回一个生成器对象。
3、yield的运行原理:
就会从函数的开头开始执行,到yield暂停,将yield后面的值返回。
如果再调用一下next(a),从暂停的地方继续执行,再循环到yield b处暂停,直到循环完毕
4、在ipython3 交互环境中,调用,先导包,from xx import *
a= createNum()
调用next(a) , out值返回的就是要的值。
三、生成器---
send:传值用
t.__next__() 和 t.send("haha")两步原理:
第一次执行t.__next__()时运行到yield i 时就暂停了,把yield后面的i=0返回给了res值了
再执行t.send("haha"),使程序往下执行,接着执行temp=yield i等号左边的temp,并传值
给了temp,依次循环,——执行到yield就停,返回值给res,send继续执行,传值给temp
四、生成器---注意事项
1、不能一上来就使用t.send(“haha”)或者 t.send()什么也不传,会报错
应该结合使用:t.__next__()
t.send("传的参数")
2.如果非要一开始就传,传个None:
t.send(None)
3、再传值时,temp的值不会被修改
一个函数里面可以有多个yield,也就是只要有一个yield的话,这个函数就是一个生成器
五、凡是可作用于 for 循环的对象都是 Iterable(可迭代的对象) 类型
一个类,如果定义了__iter__()方法,并且这个方法可以返回一个迭代器对象,那么它就是可迭代的,
可迭代对象举例:
一类是集合数据类型,如 list 、 tuple 、 dict 、 set 、 str 等;
一类是 generator ,包括生成器和带 yield 的generator function。都是可迭代对象
六、凡是可作用于 next() 函数的对象都是 Iterator(迭代器) 类型
迭代器:在一个类中,定义了__next__方法,并且具有返回值,那么就可以称这个类的实例对象是一个迭代器。
上面的实例中,定义了一个MyIterator类,并且定义了__next__方法,且具有返回值,那么他的实例对象mi就是一个迭代器,
一个类,如果定义了__iter__()方法,并且这个方法可以返回一个迭代器对象,那么它就是可迭代的,例如在上面的实例中定义一个__iter__()方法:
def __iter__(self):
return self
这个方法返回实例对象,通知之前我们知道这个实例对象是一个迭代器,所以现在它不仅是一个迭代器对象,又是一个可迭代对象
生成器可以通过for去循环的形式进行取值,所以是可迭代的对象。
生成器还可以通过next()的形式进行取值,所以它是迭代器。
生成器是迭代器,但迭代器不一定是生成器。