正弦交流电

目录

1.0 单相交流电路分析与计算

1.1 正弦交流电的基本概念

1.2 简单的交流电路

1.3 三相交流电路分析与计算

参考文献


1.0 单相交流电路分析与计算

1.1 正弦交流电的基本概念

      大小和方向随时间作周期性变化,并在一周内平均值为零的电流、电压,称为交流电流和交流电压。

        以电流为例,数学表达式为:

i=I_{m}\sin \left ( \omega t+\theta \right )

        离散化为:

i=I_{m}\sin \left ( 2\pi \times 50\times \tfrac{n}{f_{s}}+\theta \right )

        其中,i为瞬时值,I_{m}为幅值(实际为最大瞬时值),\omega为角频率(每秒变化的弧度(弧度=\frac{\pi}{180^{\circ}}\times角度),单位为弧度/s),\left ( \omega t+\theta \right )为相位,\theta为初相角,n为当前采样点,f_{s}为采样频率(50HZ时,对应AD采样频率为1200HZ)。

        若将交流电变化一周所需要的时间称为周期,用T表示,单位为秒(s),则交流电1s内变化的次数可表示为:

f=\tfrac{1}{T}

        我们通常称f为频率,单位为Hz。

        现在已知角频率\omega及周期T,则交流电一周的弧度2\pi等式为:

2\pi=\omega T

        因此,角频率,周期,频率可写为:

\omega= \tfrac{2\pi}{T}=2\pi f


         交流电的瞬时值是随时间变化的,不利于定量计算和测量,且无法准确反映交流电的实际做功能力,因此需要一个更简单的度量。随着对交流电研究的深入,发现与交流电的实际做功能力相当的直流电的数值具有重要意义。于是,基于电流的热效应,提出了有效值的概念,即让交流电和直流电分别通过相同电阻,若在相同时间内产生的热量相等,则该直流电的数值就是交流电的有效值,通常用字母I表示,因此我们推导出有效值与最大值的关系:

        对于直流电,且纯电阻电路,根据焦耳定律有:

Q_{DC}=I^{2}RT

        其中,Q_{DC}为热量,I为直流电的数值,R为电阻阻值,T为一周期的时间。

        对于交流电,一周期产生的热量为:

Q_{AC}=\int_{0}^{T}\left ( I_{m}\sin \left ( \omega t+\theta \right ) \right )^{2} R\ dt\\ =I_{m}^{2}R\int_{0}^{T}\left ( \sin \left ( \omega t+\theta \right ) \right )^{2} dt\\ =I_{m}^{2}R\int_{0}^{T}\tfrac{1-\cos \left ( 2 \left ( \omega t+\theta \right ) \right )}{2} dt\\ =\frac{I_{m}^{2}R}{2}\int_{0}^{T}\left (1-\cos \left ( 2 \left ( \omega t+\theta \right ) \right ) \right ) dt

        计算积分

\int_{0}^{T}1dt=T\\ \int_{0}^{T}\cos \left ( 2 \left ( \omega t+\theta \right ) \right )dt\\ \\ =\frac{\sin(2\omega t+\theta )}{2\omega} \big|_{0}^{T}\\ =0

        所以

Q_{AC}=\frac{I_{m}^{2}R}{2}\cdot T

        根据有效值定义:

Q_{DC}=Q_{AC}\\ I^{2}RT=\frac{I_{m}^{2}R}{2} T\\ I^{2}=\frac{I_{m}^{2}}{2}\\ I=\frac{I_{m}}{\sqrt{2}}

        所以,电流和电压的有效值均为其最大值的\frac{1}{\sqrt{2}}

        实际生活中,常见的一般是有效值,例如,常听说交流电压为380V,万用表测量的电压,电流。


        从上文正弦交流电数学表达式可以看出,各种同频率正弦交流量的不同之处主要在于幅值(或有效值)和初相角,上文已经介绍过幅值(或有效值)不再赘述。

        随时间变化的相位角表示为\left ( \omega t+\theta \right ),将t=0(可理解为开始计时的时间,此时间为相对时间)时的相位角定义为初相角\theta,:

\left ( \omega t+\theta \right )=\left ( \omega 0+\theta \right )=\theta

       从波形上看,初相角的大小就是开始计时所对应的周期波形由负到正时与横轴第一个交点距坐标原点的大小(如下图1-1),波形负到正时与横轴的交点也可称为零值点。零值点与初相角的关系可以记为:“左正,右负”。

 图1-1

        讲到同频率正弦交流量,它们之间的相位关系可以通过相位差来衡量,相位差常用\varphi表示。

i=I_{m}\sin \left ( \omega t+\theta \right )

i_{1}=I_{m_{1}}\sin \left ( \omega t+\theta_{1} \right )

        \varphi =\left ( \omega t+\theta \right )- \left ( \omega t+\theta_{1} \right )\\ =\theta-\theta_{1}

       可知,同频率正弦交流量之间的相位差为初相角差。

        注:同频率的波形比较才有意义。

        若相位差\varphi >0,则说明,正弦交流量i先于i_{1}发生,超前\varphi角;

        若相位差\varphi <0,则说明,正弦交流量i晚于i_{1}发生,滞后\varphi角;

        若相位差\varphi =0,则说明,正弦交流量ii_{1}同相。

        在相位差\varphi >0时,当\varphi =\pi,则说明,正弦交流量ii_{1}反相。


         通过以上描述可发现,波形图可以很直观地反应正弦交流电的变化情况,三角函数数学表达式可以直接体现正弦量的三要素(即幅值、频率、初相角),但是使用三角函数进行交流电运算分析时,会涉及微分和积分运算,十分不便,这个时候就可以使用相量表示法,将正弦量用复数表示,从而将微分方程转化为复数代数方程,大大简化了计算

         再介绍相量表示法前,需要先对欧拉公式有点了解,它将三角函数与复指数函数关联了起来,欧拉公式提出,对任意实数x,都存在

e^{ix}=\cos x+j\sin x

        其中,e为自然对数的底数,j是虚数单位,x以弧度为单位,\sin x为虚部,\cos x为实部。

        此外,正弦波可视为旋转向量在Y轴上的投影,如下图1-2,因此,一个正弦波可以用旋转向量来表示,向量长度为正弦波的幅值,旋转的角速度为正弦波的角频率,向量初始位置与X的夹角为正弦波的初相角。

        图1-2

        通过欧拉公式,可将正弦交流量的数学表达式(即三角函数表达式)转化为:

I_{m}\sin \left ( \omega t+\theta \right )=Im\left \{I_{m}\cdot e^{j\left (\omega t+\theta \right )} \right \}=Im\left \{ I_{m}\cdot e^{j\omega t }\cdot e^{j\theta} \right \}

        其中,Im\left \{ e^{j\left (\omega t+\theta \right )} \right \}为取虚部操作,假设所分析电路为线性,且电源的频率一定,那么电路中的电流和电压的频率与电源一致,因此可以忽略频率,只需要重点关注I_{m}\cdot e^{j\theta}部分(这里将三要素简化为两要素),则:

I_{m}\cdot e^{j\theta}=I_{m}\left ( \cos\theta+j\sin \theta \right )

        当忽略频率时,对于初相角为\theta,幅值为I_{m}的正弦波,可以在复平面中用固定向量表示,这个固定向量一般称为相量,用大写字母\dot{A}表示

\dot{A}=I_{m}\cdot e^{j\theta}=I_{m}\left ( \cos\theta+j\sin \theta \right )

        此外还可以用另一种更精简的极坐标形式表示

\dot{A}=I_{m}\cdot e^{j\theta}=I_{m}\left ( \cos\theta+j\sin \theta \right )=I_{m}\angle {\theta^{\circ}}

        因此,同频正弦量之间的运算可以转化为对应相量之间的运算。在相加减时,可以采用三角式(即I_{m}\left ( \cos\theta+j\sin \theta \right )),实部与实部相加减,虚部与虚部相加减。在乘除运算时,可以采用指数式(即I_{m}\cdot e^{j\theta})或极坐标式(即I_{m}\angle \theta),幅值(也可用有效值)与幅值相乘除,初相角与初相角相加减。

1.2 简单的交流电路

        回想下之前学习过的欧姆定律,在同一直流电路中,通过某一导体的电流跟这段导体两端的电压成正比,跟这段导体的电阻成反比。

I=\frac{U}{R}

        其中,I为电流,U为电压,R为电阻。

        那么,欧姆定律适用于交流电路吗?是的,欧姆定律同样适用于交流电路,但需要考虑阻抗,一般用Z表示,在交流电路中,电压和电流的关系不仅取决于电阻(R),还受到电感(L)和电容(C)的影响,这些因素共同构成了阻抗,因此交流电路的欧姆定律(相量表示及三角函数表示)为:

\dot{I}=\frac{\dot{U}}{Z}

i=\frac{u}{Z}


        对于纯电阻电路,设电流表示i=I_{m}\sin \omega t,则根据欧姆定律,电压与电流的关系为

u=Ri=RI_{m}\sin \omega t=U_{m}\sin \omega t

       可知:

                对于纯电阻电路,电压与电流同频率;

                对于纯电阻电路,电压与电流同相;

                对于纯电阻电路,电压与电流的幅值及有效值可表示为U_{m}=I_{m}RU=IR

                相量表示法为\dot{U}=\dot{I}R

        现在已知电流和电压,在交流电流中,电流和电压随时间不断变化,瞬时功率可以表示为:

p=ui=U_{m}I_{m}\left ( \sin \omega t \right )^{2}

        从波形图1-3,可以看出,瞬时功率随时间不断变化,但各瞬时值均\geqslant 0,因此可以说明电阻为耗能元件。

图1-3

        和之前电流类似,瞬时功率同样只能表示功率的变化情况,但是对于实际无意义。实际通常用平均功率(又称有功功率)用P表示,即一个电流周期内的平均值来衡量功率大小:

P=\frac{1}{T}\int_{0}^{T}pdt\\ =\frac{1}{T}\int_{0}^{T}U_{m}I_{m}\left ( \sin \omega t \right )^{2}dt\\ =\frac{U_{m}I_{m}}{T}\int_{0}^{T}\frac{1-\cos 2\omega t}{2}dt\\=UI


        对于纯电感电路,设电流表示i=I_{m}\sin \omega t ,对应的相量表示法\dot{I}=I_{m},电感元件的伏安特性为:u=L\frac{di}{dt},则电压为:

u=L\frac{dI_{m}\sin \omega t}{dt}\\ =\omega LI_{m}\cos \omega t\\ =U_{m}\sin \left ( \omega t+90^{\circ} \right )

        可知:

                对于纯电感电路,电压与电流同频率;

                对于纯电感电路,电压超前电流90^{\circ}

                对于纯电感电路,电压与电流的幅值及有效值可表示

U_{m}= \omega LI_{m}=X_{L}I_{m}

U= \omega LI_{m}=X_{L}I

        其中,X_{L}=wL=2\pi fL为电感的电抗,一般称为感抗,单位同样是欧姆(\Omega),感抗是电感对电流阻碍作用大小的物理量,其是由于自感电动势总是企图阻止交流电变化形成的。

        当电感L一定时,频率f越大,感抗X_{L}越大,即阻碍电流的能力越大,当频率趋近于无限大时,电感相当于开路。

        当电感L一定时,频率f越小,感抗X_{L}越小,即阻碍电流的能力越弱,当直流(f=0)时,感抗为0,电感相当于短路。

        所以可知,电感具有“通低频,阻高频”的特性(其实通和阻也是相对性的)。

        已知u=\omega LI_{m}\sin \left ( \omega t+90^{\circ} \right ),则电压可以相量表示为:

\dot{U}=\omega LI_{m}e^{j\frac{\pi}{2}}=\omega LI_{m}\left ( \cos \frac{\pi}{2} +j\sin\frac{\pi}{2}\right )=jwL\dot{I}

        现在已知电流和电压,在交流电流中,电流和电压随时间不断变化,瞬时功率可以表示为:

p=ui\\=U_{m}\sin \left ( \omega t+90^{\circ} \right )I_{m}\sin \omega t\\=U_{m}I_{m}cos \omega t \, sin \omega t\\ =UI\sin 2wt

        从波形图1-4,可以看出,瞬时功率随时间不断变化,在第一个\frac{\pi}{2}内,电压与电流同向(此时瞬时值都为正),瞬时功率为正,此时电感吸收电能转化为磁场能量,存储在线圈中,当wt=\frac{\pi}{2}时,能量存储达到最大。在第二个\frac{\pi}{2}内,电压与电流方向相反(此时瞬时为一负一正),瞬时功率为负,此时电感将存储的磁场能量返还给电源,当wt=\pi时,线圈存储的能量全部释放,接下来不断重复此过程。

图1-4

        已知,瞬时功率p,则平均功率P可表示为:

P=\int_{0}^{T}pdt\\=UI\int_{0}^{T}\sin 2wtdt\\=UI\cdot -\frac{\cos 2wt}{2w}\big|_{0}^{T}\\=0

       平均功率P=0,所以可知电感不消耗能量。

        虽然电感不消耗能量,但是从功率波形图可以看出电感交换能量,为了度量交换能量的大小,就引入了无功功率的概念(瞬时功率的最大值),常用Q_{L}表示,单位为乏(var)

Q_{L}=UI=I^{2}X_{L}=\frac{U^{2}}{X_{L}}

        电感的串并联与电阻一致


        对于纯电容电路,设电压表示u=U_{m}\sin \omega t,根据电容元件的伏安特征i=C\frac{du}{dt},则电流为:

i=C\frac{U_{m}\sin wt}{dt}=wCU_{m}\cos wt=I_{m}\sin (wt+90^{\circ})

        可知:

                对于纯电容电路,电压与电流同频率;

                对于纯电容电路,电压滞后电流90^{\circ}

                对于纯电容电路,电压与电流的幅值及有效值可表示

U_{m}=\frac{I_{m}}{wC}=X_{C}I_{m}

U=X_{C}I

        其中,X_{C}=\frac{1}{wC}=\frac{1}{2\pi fC}为电容的电抗,一般称为容抗,单位同样是欧姆(\Omega),容抗是电容对电流阻碍作用大小的物理量。电容单位为法,用F表示。

        当电容C一定时,频率f越大,容抗X_{C}越小,即阻碍电流的能力越弱,当频率趋近于无限大时,容抗趋于0,电容相当于短路。

        当电容C一定时,频率f越小,容抗X_{C}越大,即阻碍电流的能力越强,当直流(f=0)时,容抗趋于无穷大,电容相当于开路。

        所以可知,电感具有“通高频,阻低频”的特性(其实通和阻也是相对性的)。

        电流可以用相量表示为:

\dot{I}=jI_{m}

         已知u=U_{m}\sin \omega t,则电压可以相量表示为:

\dot{U}=U_{m}=X_{C}I_{m}=-jX_{C}\dot{I}

         现在已知电流和电压,在交流电流中,电流和电压随时间不断变化,瞬时功率可以表示为:

p=ui=U_{m}\sin \omega t\cdot I_{m}\sin (wt+90^{\circ})\\=U_{m}I_{m}sin \omega t\cdot \cos wt\\=UI\sin 2wt

         从波形图1-5,可以看出,瞬时功率随时间不断变化,在第一个\frac{\pi}{2}内,电压与电流同向(此时瞬时值都为正),瞬时功率为正,此时电容从电源吸收电能,并将其转化为电场能存储在电容器中,当wt=\frac{\pi}{2}时,能量存储达到最大。在第二个\frac{\pi}{2}内,电压与电流方向相反(此时瞬时为一负一正),瞬时功率为负,电容器输出功率,向电源释放能量,当wt=\pi时,电容器存储的能量全部释放,接下来不断重复此过程。

图1-5

        已知,瞬时功率p,则平均功率P可表示为:

P=\int_{0}^{T}pdt\\=UI\int_{0}^{T}\sin 2wtdt\\=UI\cdot -\frac{\cos 2wt}{2w}\big|_{0}^{T}\\=0

       平均功率P=0,所以可知电容不消耗能量。

        虽然电容不消耗能量,但是从功率波形图可以看出电容交换能量,为了度量交换能量的大小,就引入了无功功率的概念(瞬时功率的最大值),常用Q_{C}表示,单位为乏(var)

Q_{C}=UI=I^{2}X_{C}=\frac{U^{2}}{X_{C}}


         以上都是对”单个“电阻、电感、电容进行分析,这时若电阻并串联,或电感并串联,或电容并串联,那么怎么等效单个元件呢?

        对于两个电阻(R_{1}R_{2})串联的回路,设等效电阻为R,经过每个电阻的电流相等,根据基尔霍夫电压定律,有

\dot{U}= \dot{U}_{1}+\dot{U}_{1}

\dot{I}R=\dot{I}R_{1}+\dot{I}R_{2}

R=R_{1}+R_{2}

        对于两个电阻(R_{1}R_{2})并联的回路,设等效电阻为R,每个电阻两端的电压相等,根据基尔霍夫电流定律,有

\dot{I}=\dot{I_{1}}+\dot{I_{2}}

\frac{\dot{U}}{R}=\frac{\dot{U}}{R_{1}}+\frac{\dot{U}}{R_{2}}

R=\frac{R_{1}R_{2}}{R_{1}+R_{2}}

        对于两个电感(L_{1}L_{2})串联的回路,设等效电感为L,经过每个电感的电流相等,根据基尔霍夫电压定律,有

\dot{U}= \dot{U}_{1}+\dot{U}_{1}

jwL\dot{I}=jwL_{1}\dot{I}+jwL_{2}\dot{I}

L=L_{1}+L_{2}

        对于两个电感(L_{1}L_{2})并联的回路,设等效电感为L,每个电感两端的电压相等,根据基尔霍夫电流定律,有

\dot{I}=\dot{I_{1}}+\dot{I_{2}}

\frac{\dot{U}}{jwL}=\frac{\dot{U}}{jwL_{1}}+\frac{\dot{U}}{jwL_{2}}

L=\frac{L_{1}L_{2}}{L_{1}+L_{2}}

        

        对于两个电容(C_{1}C_{2})串联的回路,设等效电容为C,经过每个电容的电流相等,根据基尔霍夫电压定律,有

\dot{U}= \dot{U}_{1}+\dot{U}_{1}

-\frac{j\dot{I}}{wC}=-\frac{j\dot{I}}{wC_{1}}-\frac{j\dot{I}}{wC_{2}}

C=\frac{C_{1}L_{2}}{C_{1}+C_{2}}

        对于两个电容(C_{1}C_{2})并联的回路,设等效电容为C,每个电容两端的电压相等,根据基尔霍夫电流定律,有

\dot{I}=\dot{I_{1}}+\dot{I_{2}}

2\pi fC\dot{U}=2\pi fC_{1}\dot{U}+2\pi fC_{2}\dot{U}

C=C_{1}+C_{2}


        对于RLC串联电路,当电路两端加上正弦交流电压u时,电路中将产生交流电流i,同时在各元件上产生电压u_{R}u_{L}u_{C}

        则根据基尔霍夫电压定律(KVL,同样适用于交流电路)有三角函数表达式为:

       u=u_{R}+u_{L}+u_{C}

        相量表示为

\dot{U}=\dot{U}_{R}+\dot{U}_{L}+\dot{U}_{C}\\ =R\dot{I}+jX_{L}\dot{I}-jX_{C}\dot{I}\\ =\left [ R+j\left ( X_{L}-X_{C} \right ) \right ]\dot{I}\\ =\left [ R+jX) \right ]\dot{I}\\ =Z\dot{I}          

        其中,X= X_{L}-X_{C},称为电路的电抗,它反映了感抗和容抗综合限流作用。Z=R+jX=\left | Z \right |\angle \varphi,称为电路的复阻抗,它是一般的复数计算量,不是相量,\left | Z \right |为复阻抗的模,称为阻抗\varphi为阻抗角,因此阻抗三角形为一直角三角型,则Z可再表示为:

Z=\frac{\dot{U}}{\dot{I}}=\frac{U\angle \theta _{u}}{I\angle \theta _{i}}=\frac{U}{I}\angle(\theta _{u}-\theta _{i})=\left | Z \right |\angle \varphi

        则,\left | Z \right |=\frac{U}{I}\varphi=\theta _{u}-\theta _{i},即电压与电流有效值之比等于阻抗,电压与电流的相位差等于阻抗角。

        考虑到串联电路中各元件中通过的是同一电流,所以选电流为参考相量(即设初相位角为0),把电流画在正实轴上,设X_{L}>X_{C},则RLC串联电路相量图为

        可知,\dot{U_{R}}\dot{U_{R}}\dot{U_{R}}三个相量组成一个电压直角三角形,则根据勾股定理,电压有效值(或幅值)关系为:

U_{R}=U\cos \varphi\\ U_{X}=U\sin \varphi\\ U=\sqrt{U_{R}^{2}+U_{X}^{2}}=\sqrt{U_{R}^{2}+\left (U_{L}-U_{C} \right )^{2}}

        更进一步,可以得出电压与电流的相位差(即阻抗角)为:

\varphi =\arctan \frac{U_{X}}{U_{R}}=\arctan \frac{U_{L}-U_{C}}{U_{R}}

        总结以上:

                1、RLC串联电路中,各电压和电流都是同频率的正弦量;

                2、端电压的有效值(或幅值)与电流的有效值(或幅值)之间有类似欧姆定律的关系,即\left | Z \right |=\frac{U}{I}

                3、各电压的有效值(或幅值)之间不符合KVL定律,即U\neq U_{R}+U_{L}+U_{C}

                4、端电压与电流之间的相位差就是电路的阻抗角\varphi。阻抗三角形各边乘以电流有效值就可以得到电压三角形。

        上述推导有个假设为X_{L}>X_{C},即电抗X>0,感抗的作用大于容抗,\varphi >0,就和电感类似,电压会超前电流,超前角度为\left | \varphi \right |

        若X_{L}<X_{C},即电抗X<0,容抗的作用大于感抗,\varphi <0,就和电容类似,电压会滞后电流,滞后角度为\left | \varphi \right |

         若X_{L}=X_{C},即电抗X=0,容抗的作用与感抗相同,相互抵消,\varphi =0,就和电阻类似,电压与电流同相,称为串联谐振


        对于RLC并联电路,电路图如下

        根据基尔霍夫电流定律(KCL,同样适用于交流电路)有三角函数表达式为:

       i=i_{R}+i_{L}+i_{C}

        相量表示为

        \dot{I}=\dot{I}_{R}+\dot{I}_{L}+\dot{I}_{C}\\ =\frac{\dot{U}}{R}+\frac{\dot{U}}{jX_{L}}+\frac{\dot{U}}{-jX_{C}}\\ =G\dot{U}-jB_{L}\dot{U}+jB_{C}\dot{U}\\ =\left [ G+j(B_{C}-B_{L}) \right ]\dot{U}\\ =\left (G+jB\right )\dot{U}\\ =Y\dot{U}

        其中,G为电导,B_{L}为感纳,B_{C}为容纳,单位都是西门子(A/V),用符号S表示。B为电纳。Y为复导纳,是端电流相量与电压相量的比值

Y=G+jB=\frac{\dot{I}}{\dot{U}}=\left | Y \right |\angle {\varphi }'

        {\varphi }'为导纳角,电流与电压的相位差,即

{\varphi }'=\theta _{i}-\theta _{u}\\ =\arctan \frac{B}{G}\\ =\arctan \frac{B_{C}-B_{L}}{G}

        则导纳三角形为一个直角三角形,如下图

        考虑到并联电路中各元件的电压相同,所以选电压为参考相量(即设初相位角为0),把电压画在正实轴上,设X_{L}>X_{C},则RLC串联电路相量图为

        上述推导有个假设为X_{L}>X_{C},即B_{C}>B_{L}B>0{\varphi }'>0,容抗的作用大于感抗,电压会滞后电流,滞后角度为\left | {\varphi}' \right |

        若X_{L}<X_{C},即B_{C}<B_{L}B<0{\varphi }'<0,感抗的作用大于容抗,电压会超前电流,超前角度为\left | {\varphi}' \right |

        若X_{L}=X_{C},即B_{C}=B_{L}B=0{\varphi }'=0,容抗的作用与感抗相同,相互抵消,就和电阻类似,电压与电流同相,称为并联谐振


        实际交流电路的负载就是电阻、电感、电容这三种不同性质的元件组合而成的无源网络(注20250513:无源网络是指不含有任何电源(包括电压源和电流源)的电路网络。它仅由电阻器、电容器、电感器等无源元件组成,这些元件本身不能产生能量,只能对输入的信号进行传输、变换、分配或储存电能)。如下图为无源二端网络

        设i=\sqrt{2}I\sin wtu=\sqrt{2}U\sin (wt+\varphi )\varphi为电压与电流的相位差(因此\varphi在正负90^{\circ}范围内),则瞬时功率p为:

p=ui=\sqrt{2}I\sin wt\sqrt{2}U\sin (wt+\varphi )\\ =UIcos\varphi (1-cos2wt)+UIsin\varphi sin2wt

        则可知,瞬时功率由两部分组成,第一部分恒为正,它代表电路从电源吸收的瞬时功率,实际就是电阻消耗的功率,在一个周期内的平均值为有功功率

P=\int_{T}^{0}UIcos\varphi (1-\cos 2wt)dt=UIcos\varphi

        其中,cos\varphi为电路的功率因数。

        电路中,只有电阻消耗有功功率,所以电路中消耗的总有功功率等于所有电阻上消耗功率之和

P=\sum_{n}^{k=1} I_{k}^{2}R_{k}=\sum_{n}^{k=1}P_{k}

        其中,R_{k}I_{k}为第k个电阻的阻值和流经此电阻的电流有效值。

        无功功率是用于衡量电源与负载中电抗元件交换规模的物理量,在数值上等于瞬时功率的最大值。从瞬时功率公式可知,瞬时功率的第二部分为交换功率,交换规模为UIsin\varphi,则无功功率为:

Q=UIsin\varphi

        对于感性电路,电压超前电流,\varphi >0,则Q>0

        对于容性电路,电压滞后电流,\varphi <0,则Q<0

        对于RLC串联电路,无功功率为:

Q=UIsin\varphi\\ =U_{X}I\\ =(U_{L}-U_{C})I\\ =I^{2}(X_{L}-X_{C})\\ =I^{2}X

        则有Q=Q_{L}-Q_{C}

        在交流电路中,不仅存在着负载中电抗元件和电源之间的能量交换,而且还存在着电感元件和电容元件之间的能量交换。也就是电感无功与电容无功相互补偿,电感吸收能量时,正是电容释放能量时,电容吸收能量时,电感正好释放能量。通常电感的无功功率不等于电容无功功率,所以不会正好完全补偿,无功功率的不足部分由电源提供。

        视在功率是用来表示电气设备容量的。如一台发电机,正常情况下的端电压是由电机的绝缘性能限定的,称为额定电压。而能提供的电流则是由导线的截面、材料和散热条件确定的,称为额定电流。额定电压与额定电流的乘积,则表示这台发电机的容量,即表示这台发电机可能提供的最大功率把电压的有效值与电流的有效值的乘积称为视在功率,用大写字母S表示,单位为伏安,用V.A表示,即

S=UI

        由视在功率、有功功率、无功功率计算公式,可以知道

P=S\cos \varphi \\ Q=S\sin \varphi \\ S=\sqrt{P^{2}+Q^{2}}

        则,可知三者构成了直角三角形称为功率三角形


        电力系统的负载大部分是感性的(例如,电动机、变压器等重要设备都属于感性负载),一般功率因数比较低(注20250513:因为\cos \varphi,中的\varphi越接近90°越小,对于感性负载,电流滞后于电压,相位差为正值且通常较大(接近90°))。例如一台额定容量为1000kVA的变压器在额定情况下运行,在负载的功率因数为1时,此变压器传输的有功功率为1000kW;而当负载的功率因数为0.6 时,只能传输1000x0.6=600kW的有功功率。

        在电压U一定,向负载输送有功功率P时,负载的功率因数\cos \varphi越低,则通过输电线路的电流I=\frac{P}{U\cos \varphi }越大,线路电阻r_{L}的损耗I^{2}r_{L}越大;输电线路的电流越大,线路阻抗的中电压降越大,使用户端电压降低影响负载的正常工作。所以提高功率因数对提高设备利用率、降低线路损耗及线路电压损耗都有重要的意义

        对于感性负载,电流滞后于电压,相位差为正值且通常较大(接近90°),因此为了提高功率因数,可以提高电容负载,减少相位差。在电感性负载侧并联电容器,使无功功率就地交换,减少电源对负载供给的无功功率,也就减少了电源至负载线路的电流,降低了线路损耗,提高了功率因数,如下图。

功率因数的提高

        如上图,电感性负载在未并电容器前,电流\dot{I}_{L}滞后电压\dot{U}\varphi _{1}角,此时\dot{I}=\dot{I}_{L}也滞后电压\dot{U}\varphi _{1}角。并联电容后,电压\dot{U}不变,电感性负载支路电流\dot{I}_{L}不变,电容支路中电流\dot{I}_{C}超前电压\dot{U}\frac{\pi }{2}。总电流\dot{I}=\dot{I}_{L}+\dot{I}_{C},设电流\dot{I}滞后电压\dot{U}\varphi _{2},且\varphi _{2}<\varphi _{1},因此功率因数\cos \varphi _{2}>\cos \varphi _{1},从而提高了功率因数。

        功率因数\cos \varphi _{2}>\cos \varphi _{1},需要并联多大的电容器呢?

        设电压U及有功功率P一定时,根据\dot{I}=\dot{I}_{L}+\dot{I}_{C},可知,以电压为基准,可有如上三角关系,则有

I_{C}=I_{L}\sin \varphi _{1}-I\sin \varphi _{2}\\ =\frac{p}{Ucos\varphi _{1}}\sin \varphi _{1}-\frac{p}{Ucos\varphi _{2}}\sin \varphi _{2}\\ =\frac{P}{U}(tan\varphi _{1}-tan\varphi _{2})\\

        已知,I_{C}=\frac{U}{X_{C}}=UwC,则有:

C=\frac{P}{U^{2}w}(tan\varphi _{1}-tan\varphi _{2})

1.3 三相交流电路分析与计算

        首先介绍对称三相交流电源,三相交流发电机有定子和转子组成,对于汽轮发电机来说转子是一对磁极,定子嵌有三相绕组 AX、BY 和CZ的匝数和尺寸完全相同,只是它们在空间的位置上顺时针彼此相差120°,当转子磁极按顺时针方向匀速旋转时,在三相线圈中都会产生感应电动势,在线圈两端产生电压,在发电机的设计和制造时,使产生的电压按正弦规律变化。如果我们把三相绕组的始端规定为 A、B、C,末端规定为X、Y、Z,且设电压参考方向为由始端到末端

        以A相为参考,则三相电源的电压瞬时值三角函数表示为:

u_{A}=U^{m}sinwt\\ u_{B}=U^{m}sin(wt-120°)\\ u_{C}=U^{m}sin(wt+120°)

        则对应的相量表达式为

\dot{U}_{A}=U\angle 0^{\circ}\\ \dot{U}_{B}=U\angle -120^{\circ}=\alpha ^{2} \dot{U}_{A}\\ \dot{U}_{C}=U\angle +120^{\circ}=\alpha \dot{U}_{A}\\

        其中,\alpha单位相量算子

        \alpha =e^{j120^{\circ}}=\angle +120^{\circ}=-\frac{1}{2}+j\frac{\sqrt{3}}{2}\\ \alpha^{2} =e^{-j120^{\circ}}=\angle -120^{\circ}=-\frac{1}{2}-j\frac{\sqrt{3}}{2}

       

        三个相电压达到同一数值的先后顺序称为相序。若不加说明,三相电压的相序都是指正序。对称三相电压满足:瞬时值之和及相量之和均为0,则:

u_{A}+u_{B}+u_{C}=0\\ \dot{U}_{A}+\dot{U}_{B}+\dot{U}_{C}=0


        三相电源有星形(Y形)和三角形(\Delta形)两种连接方式。

        三相电源的星形连接是将三个电压源的末端X、Y、Z连接在一起,形成一个公共端N,叫做电源的中性点,简称中点,从中点引出的导线称为中线或零线,从首端A、B、C引出三条输电线称为端线(又称火线)。

        电压分为两种,一种是每相电源绕组的首端与中线(末端)之间的电压称为电源的相电压,用u_{A}u_{B}u_{C}表示。三相电源的任意两条端线间的电压称为电源的线电压,用u_{AB}u_{BC}u_{CA}表示。

        由KVL可知,有:

u_{AB}=u_{A}-u_{B}\\ u_{BC}=u_{B}-u_{C}\\ u_{CA}=u_{C}-u_{A}

        相量表示为:

\dot{U}_{AB}=\dot{U}_{A}-\dot{U}_{B}=\sqrt{3}\dot{U}_{A}\angle 30^{\circ}\\ \dot{U}_{BC}=\dot{U}_{B}-\dot{U}_{C}=\sqrt{3}\dot{U}_{B}\angle 30^{\circ}\\ \dot{U}_{CA}=\dot{U}_{C}-\dot{U}_{A}=\sqrt{3}\dot{U}_{C}\angle 30^{\circ}\\

        可见,线电压在相位上超前对应相电压30°。用U_{L}表示线电压的有效值,用U_{P}表示相电压的有效值,则有:

U_{L}=\sqrt{3}U_{P}

        对于星形连接的三相电源,若三个相电压是一组对称正弦电压,则线电压也是一组对称正弦电压;在习惯参考方向下,各线电压在相位上分别超前相应的相电压30°。

        流过每相电源的电流称为相电流,流过端线的电流称为线电流,用i_{A}i_{B}i_{C}表示。流过中线的电流称为中线电流,用i_{N}表示。端线上的电流就是流过各相电源的电流所以星形连接的三相电路中线电流等于相应的相电流。如用I_{P}表示相电流的有效值,用I_{L}表示线电流的有效值,则有:

I_{L}=I_{P}


         三相电源的三角形连接是将三相绕组依次首尾相接,从三个连接点引出三根端线。三角形连接的三相电源内部形成一个闭合回路。对于对称三相电源来说,由于对称三相电压相量之和等于零,即 \dot{U}=\dot{U}_{A}+\dot{U}_{B}+\dot{U}_{C}=0,如下图所示。若连接正确,则三角形回路中电压相量和等于零,在没有接上负载的情况下,回路中没有电流。

         若不慎将其中一相绕组(C相)的极性接反,则三角形回路中的电压不为零,回路中电压在数值上等于一相电压的两倍。这种情况下回路中将产生很大环流(注20250514:电压差:当两个电气系统并联运行时,如果它们的电压幅值不同,就会产生电压差,从而导致电流从高电压系统流向低电压系统),以致烧坏绕组。因此,当三相电源作三角形连接时,为避免因错接而造成事故,可先将三相绕组开口三角形,在开口处接上一只电压表,测量回路电压如下图所示。若电压表计数为零,则可断定接线正确,这时可将开口处连接,否则应测定极性,查出错误,重新接线。

        三角形连接的三相电源,每相电源直接接于两端线之间,因此,三角形连接的三相电源的线电压就是相应的相电压。如图1-21(a)所示。则有:

参考文献

[1]James Gordon, William Thomson 等. 交流電[EB/OL]. (1882-01-01)[2025-04-27]. https://zh.m.wikipedia.org/wiki/%E4%BA%A4%E6%B5%81%E9%9B%BB.

[2]Bracewell R, Giancoli D C. 相量[EB/OL]. (2000-01-01)[2025-04-27]. https://zh.m.wikipedia.org/wiki/%E7%9B%B8%E9%87%8F.

[3]百度百科. 相量法[EB/OL]. (2025-01-01)[2025-04-28]. https://baike.baidu.com/item/%E7%9B%B8%E9%87%8F%E6%B3%95/5936890.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值