输入数学公式
数学公式的web解决方案
MathJax渲染过程简单模拟
1 MathJax最简示
2 模拟MathJax渲染原理
CSDN-MarkDown编辑器常用数学公式输入教程
1 公式定界符与关键字
2 上下标
3 括号和分隔符
4 分数
5 开方
6 省略号
7 矢量
8 积分
9 极限
10 累加累乘
11 希腊字母
12 数学符号大汇总
13 需要转义的字符
14 使用指定字体
1 数学公式的web解决方案
在网页上显示漂亮的数学公式,是多年来数学工作者和学者的愿望。最容易实现的方式就是使用离线编辑器如word,Latex等编写完公式,然后截图作为图片在html网页中显示。然而这种方式存在很多缺点:无法在线修改,离线修改后必须重新截图
放大显示会失真,这是位图的天生缺陷
不同的离线编辑器生成的显示效果不同,很难统一
由于无法直接编辑,所以即使看到了公式,也无法在此基础上进一步修改,不利于交流
当然,位图显示公式也有一个最大的优点,那就是兼容所有浏览器,不需要任何插件就可以浏览。
随着html, css的持续发展,使用纯html+css来显示公式已经非常可行,于是大名鼎鼎的MathJax出现了。它是一个开源的JavaScript库,用来把特定格式的公式描述转换为html+css或者svg代码,从而在浏览器上显示数学公式。
2 MathJax渲染过程简单模拟
2.1 MathJax最简示例
先来看一个带公式的最简网页实例mathjax.html。 ```html在浏览器中打开mathjax.html,会显示如下图:
其对应的html代码如下图:
2.2 模拟MathJax渲染原理
从前面的例子可以看出,MathJax中数学公式是用一些特殊字符串表示的,这些字符串被特定的边界$ $和$$ $$包围。然后MathJax引擎会根据边界提取公式表达式,然后把它们替换成用户显示公式的html+css代码。下面我们来模拟这一过程。用math.js模拟MathJax.js,如下所示:
window.onload = function()
{
var body = document.getElementsByTagName('body')[0];
var oldBody = body.innerHTML;
var newBody = oldBody.replace(/[^$]\$([^$]+)\$[^$]/g, function(str, r1){
return MathJax_inline(r1);
});
newBody = newBody.replace(/\$\$([^$]+)\$\$/g, function(str, r1){
return MathJax_block(r1);
});
body.innerHTML = newBody;
}
// 把公式内容描述转换为显示描述
function MathJax_inline(r1)
{
return '<span style="color:red">' + r1 + '</span>';
}
function MathJax_block(r1)
{
return '<div style="color:red">' + r1 + '</div>';
}
html页面相应修改:
<!DOCTYPE html>
<html>
<head>
<title>MathJax TeX Test Page</title>
<script type="text/javascript" src="math.js"></script>
</head>
<body>
When $a \ne 0$, there are two solutions to $ax^2 + bx + c = 0$ and they are
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$
</body>
</html>
来看看效果:
虽然没有正确显示出公式,但是已经识别出了公式边界,并把公式部分用红色显示出来。真正的MathJax是把公式表达式替换成显示公式的html代码,而不是简单的设置为红色,但是这其中的处理原理是一致的。
3 CSDN-MarkDown编辑器常用数学公式输入教程
MathJax支持多种公式输入输出规范,输入格式可以是MathML, TeX,ASCIImath中的任何一种,输出格式可以是html+css,或svg,或MathML。下面仅对最常用的Tex输入规范进行说明。3.1 公式定界符与关键字
CSDN-MarkDown编辑器使用的公式定界符为$和$$,单美元符号包围的是行内公式,双美元符号包围的是块公式。 Tex关键字(字符转义序列)表示特殊显示符号,如\frac表示分数,其后面可以跟随参数,参数多少与关键字有关。3.2 上下标
^表示上标,_表示下标,如果上(下)标内容多于一个字符就需要使用{},注意不是( ), 因为( )经常是公式本身组成部分,为避免冲突,所以选用了{ } 将其包起来。示例:$x^{y^z}=(1+e^x)^{-2xy^w}$
效果:
x
y
z
=
(
1
+
e
x
)
−
2
x
y
w
x^{y^z}=(1+e^x)^{-2xy^w}
xyz=(1+ex)−2xyw
上面输入的上下标都是在字符的右侧,要想在左侧或者两侧都写上下标,那么需要使用\sideset语法。
示例:$\sideset{^1_2}{^3_4}\bigotimes$
效果:KaTeX parse error: Undefined control sequence: \sideset at position 1: \̲s̲i̲d̲e̲s̲e̲t̲{^1_2}{^3_4}\bi…
3.3 括号和分隔符
( )和[ ]就是自身了,由于{ } 是Tex的元字符,所以表示它自身时需要转义。示例:$f(x,y) = x^2 + y^2, x\epsilon[0,100]$
效果:
f
(
x
,
y
)
=
x
2
+
y
2
,
x
ϵ
[
0
,
100
]
f(x,y) = x^2 + y^2, x\epsilon[0,100]
f(x,y)=x2+y2,xϵ[0,100]
有时候括号需要大号的,普通括号不好看,此时需要使用\left和\right加大括号的大小。
示例:$(\frac{x}{y})^8$,$\left(\frac{x}{y}\right)^8$
效果:
(
x
y
)
8
(\frac{x}{y})^8
(yx)8,
(
x
y
)
8
\left(\frac{x}{y}\right)^8
(yx)8
\left和\right必须成对出现,对于不显示的一边可以使用 . 代替。
示例:$\left.\frac{{\rm d}u}{{\rm d}x} \right| _{x=0}$
效果: d u d x ∣ x = 0 \left.\frac{{\rm d}u}{{\rm d}x} \right| _{x=0} dxdu∣∣x=0
3.4 分数
使用\frac{分子}{分母}格式,或者 分子\over 分母。示例:$\frac{1}{2x+1}$或者$1\over{2x+1}$
效果:12x+112x+1 或者 12x+112x+1
3.5 开方
示例:`$\sqrt[9]{3}$ 和 $\sqrt{3}$`效果: 3 9 \sqrt[9]{3} 93 和 3 \sqrt{3} 3
3.6 省略号
有两种省略号,\ldots 表示语文本底线对其的省略号,\cdots表示与文本中线对其的省略号。示例:$f(x_1, x_2, \ldots, x_n)=x_1^2 + x_2^2+ \cdots + x_n^2$
效果: f ( x 1 , x 2 , … , x n ) = x 1 2 + x 2 2 + ⋯ + x n 2 f(x_1, x_2, \ldots, x_n)=x_1^2 + x_2^2+ \cdots + x_n^2 f(x1,x2,…,xn)=x12+x22+⋯+xn2;
3.7 矢量
示例:$\vec{a} \cdot \vec{b}=0$
效果: a ⃗ ⋅ b ⃗ = 0 \vec{a} \cdot \vec{b}=0 a⋅b=0
3.8 积分
示例:$\int_0^1x^2{\rm d}x $
效果: ∫ 0 1 x 2 d x \int_0^1x^2{\rm d}x ∫01x2dx
3.9 极限
示例:$\lim_{n\rightarrow+\infty}\frac{1}{n(n+1)}$
效果: lim n → + ∞ 1 n ( n + 1 ) \lim_{n\rightarrow+\infty}\frac{1}{n(n+1)} limn→+∞n(n+1)1
3.10 累加、累乘
示例:$\sum_1^n\frac{1}{x^2}$, $\prod_{i=0}^n\frac{1}{x^2}$
效果: ∑ 1 n 1 x 2 \sum_1^n\frac{1}{x^2} ∑1nx21, ∏ i = 0 n 1 x 2 \prod_{i=0}^n\frac{1}{x^2} ∏i=0nx21
3.11 希腊字母
希腊字符示例:$$\alpha A \beta B \gamma \Gamma \delta \Delta \epsilon E \varepsilon \zeta Z \eta H \theta \Theta \vartheta \iota I \kappa K \lambda \Lambda \mu M \nu N \xi \Xi o O \pi \Pi \varpi \rho P \varrho \sigma \Sigma \varsigma \tau T \upsilon \Upsilon \phi \Phi \varphi \chi X \psi \Psi \omega \Omega$$效果:
α A β B γ Γ δ Δ ϵ Eε ζ Z η H θ Θ ϑι I κ K λ Λ μ M ν Nξ Ξ o O π Π ϖ ρ Pϱ σ Σ ς τ T υ Υϕ Φ φ χ X ψ Ψ ω Ω
α A β B γ Γ δ Δ ϵ Eε ζ Z η H θ Θ ϑι I κ K λ Λ μ M ν Nξ Ξ o O π Π ϖ ρ Pϱ σ Σ ς τ T υ Υϕ Φ φ χ X ψ Ψ ω Ω
3.12 数学符号大汇总
±± :\pm
×× :\times
÷÷:\div
∣∣:\mid
⋅⋅:\cdot
∘∘:\circ
∗∗:\ast
⨀⨀:\bigodot
⨂⨂:\bigotimes
⨁⨁:\bigoplus
≤≤:\leq
≥≥:\geq
≠≠:\neq
≈≈:\approx
≡≡:\equiv
∑∑:\sum
∏∏:\prod
∐∐:\coprod
集合运算符:
∅∅:\emptyset
∈∈:\in
∉∉:\notin
⊂⊂:\subset
⊃⊃ :\supset
⊆⊆ :\subseteq
⊇⊇ :\supseteq
⋂⋂ :\bigcap
⋃⋃ :\bigcup
⋁⋁ :\bigvee
⋀⋀ :\bigwedge
⨄⨄ :\biguplus
⨆⨆:\bigsqcup
对数运算符:
loglog :\log
lglg :\lg
lnln :\ln
三角运算符:
⊥⊥:\bot
∠∠:\angle
30∘30∘:30^\circ
sinsin :\sin
coscos :\cos
tantan :\tan
cotcot :\cot
secsec :\sec
csccsc :\csc
微积分运算符:
y′xy′x:\prime
∫∫:\int
∬∬ :\iint
∭∭ :\iiint
∬∬⨌:\iiiint
∮∮ :\oint
limlim :\lim
∞∞ :\infty
∇∇:\nabla
逻辑运算符:
∵∵:\because
∴∴ :\therefore
∀∀ :\forall
∃∃ :\exists
≠≠ :\not=
≯≯:\not>
⊄⊄:\not\subset
戴帽符号:
yy :\hat{y}
yˇyˇ :\check{y}
y˘y˘ :\breve{y}
连线符号:
a
+
b
+
c
+
d
‾
\overline{a+b+c+d}
a+b+c+d:\overline{a+b+c+d}
a
+
b
+
c
+
d
‾
\underline{a+b+c+d}
a+b+c+d:\underline{a+b+c+d}
a
+
b
+
c
⏟
1.0
+
d
⏞
2.0
\overbrace{a+\underbrace{b+c}_{1.0}+d}^{2.0}
a+1.0
b+c+d
2.0:\overbrace{a+\underbrace{b+c}_{1.0}+d}^{2.0}
箭头符号:
↑↑:\uparrow
↓↓:\downarrow
⇑⇑ :\Uparrow
⇓⇓:\Downarrow
→→:\rightarrow
←← :\leftarrow
⇒⇒ :\Rightarrow
⇐⇐ :\Leftarrow
⟶⟶ :\longrightarrow
⟵⟵ :\longleftarrow
⟹⟹:\Longrightarrow
⟸⟸ :\Longleftarrow
3.13 需要转义的字符
要输出字符 空格 # $ % & _ { } ,用命令: \空格 # \$ \% \& _ { }3.14 使用指定字体
{\rm text}如: 使用罗马字体:texttext `${\rm text}$`其他的字体还有:
\rm 罗马体 \it 意大利体
\bf 黑体 \cal 花体
\sl 倾斜体 \sf 等线体
\mit 数学斜体 \tt 打字机字体
\sc 小体大写字母
a + b + c + d ‾ \overline{a+b+c+d} a+b+c+d
转载自:https://blog.csdn.net/smstong/article/details/44340637#37-%E7%9F%A2%E9%87%8F