Informer代码详解

Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting

注:大家觉得博客好的话,别忘了点赞收藏呀~
论文:https://arxiv.org/abs/2012.07436
代码:https://github.com/zhouhaoyi/Informer2020
本文参考:https://zhuanlan.zhihu.com/p/374936725

1 数据集

在这里插入图片描述
该数据集每条记录由8个特征组成,每个特征会经过conv1d变为512维向量。如果进行多变量预测任务,则预测为后7列变量的值,如果进行的是单变量预测任务,则预测最后一列变量的值。

将date列的内容编码为时间戳,主要是通过utils中的timeFeatures.py文件实现,主要是进行以下的转换(以freq='h’为例),转化后的4维变量每一维分别代表【月份、日期、星期、小时】:

转换前 转换后
2016-07-01 00:00:00 [ 7, 1, 4, 0]
2016-07-01 00:15:00 [ 7, 1, 4, 1]
2017-06-25 23:00:00 [ 6,25, 6,23]

2 Embedding

如图所示,数据的embedding由三个部分组成

  • Scalar是采用conv1d将1维转换为512维向量
  • Local TIme Stamp采用Transformer中的Positional Emebdding
  • Gloabal Time Stamp 则是上述处理后的时间戳经过Eemdding
    最后,使用三者相加得到最后的输入(shape:[batch_size,seq_len,d_model)
    在这里插入图片描述

1.Projection

对输入的原始数据进行一个1维卷积得到,将输入数据从Cin=7维映射为d_model=512维。

class TokenEmbedding(nn.Module):
    def __init__(self, c_in, d_model):
        super(TokenEmbedding, self).__init__()
        padding = 1 if torch.__version__>='1.5.0' else 2
        self.tokenConv = nn.Conv1d(in_channels=c_in, out_channels=d_model, 
                                    kernel_size=3, padding=padding, padding_mode='circular')
        for m in self.modules():
            if isinstance(m, nn.Conv1d):
                nn.init.kaiming_normal_(m.weight,mode='fan_in',nonlinearity='leaky_relu')

    def forward(self, x):
        x = self.tokenConv(x.permute(0, 2, 1)).transpose(1,2)
        return x

2.Position Embedding

和Transformer中的位置编码一样,公式如下
P E ( p o s , 2 i ) = s i n ( p o s / 1000 0 2 i / d m o d e l ) PE_{(pos,2i)} = sin(pos/10000^{2i/dmodel} ) PE(pos,2i)=sin(pos/100002i/dmodel)
P E ( p o s , 2 i + 1 ) = c o s ( p o s / 1000 0 2 i / d m o d e l ) PE_{(pos,2i+1)} = cos(pos/10000^{2i/dmodel} ) PE(pos,2i+1)=cos(pos/100002i/dmodel)

class PositionalEmbedding(nn.Module):
    def __init__(self, d_model, max_len=5000):
        super(PositionalEmbedding, self).__init__()
        # Compute the positional encodings once in log space.
        pe = torch.zeros(max_len, d_model).float()
        pe.require_grad = False

        position = torch.arange(0, max_len).float().unsqueeze(1)
        div_term = (torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)).exp()

        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)

        pe = pe.unsqueeze(0)
        self.register_buffer('pe', pe)

    def forward(self, x):
        return self.pe[:, :x.size(1)]

3.时间戳编码

对时间戳的编码主要分为TemporalEmbeddingTimeFeatureEmbedding这两种方式,前者使用month_embed、day_embed、weekday_embed、hour_embed和minute_embed(可选)多个embedding层处理输入的时间戳,将结果相加;后者直接使用一个全连接层将输入的时间戳映射到512维的embedding。

TemporalEmbedding中的embedding即可以使用像Position Embedding中的绝对位置编码(embed_type=='fixed'),也可以使用nn.Embedding让网络训练

class FixedEmbedding(nn.Module):
    def __init__(self, c_in, d_model):
        super(FixedEmbedding, self).__init__()

        w = torch.zeros(c_in, d_model).float()
        w.require_grad = False

        position = torch.arange(0, c_in).float().unsqueeze(1)
        div_term = (torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)).exp()

        w[:, 0::2] = torch.sin(position * div_term)
        w[:, 1::2] = torch.cos(position * div_term)

        self.emb = nn.Embedding(c_in, d_model)
        self.emb.weight = nn.Parameter(w, requires_grad=False)

    def forward(self, x):
        return self.emb(x).detach()

class TemporalEmbedding(nn.Module):
    def __init__(self, d_model, embed_type='fixed', freq='h'):
        super(TemporalEmbedding, self).__init__()

        minute_size = 4; hour_size = 24
        weekday_size = 7; day_size = 32; month_size = 13

        Embed = FixedEmbedding if embed_type=='fixed' else nn.Embedding
        if freq=='t':
            self.minute_embed = Embed(minute_size, d_model)
        self.hour_embed = Embed(hour_size, d_model)
        self.weekday_embed = Embed(weekday_size, d_model)
        self.day_embed = Embed(day_size, d_model)
        self.month_embed = Embed(month_size, d_model)
    
    def forward(self, x):
        x = x.long()
        
        minute_x = self.minute_embed(x[:,:,4]) if hasattr(self, 'minute_embed') else 0.
        hour_x = self.hour_embed(x[:,:,3])
        weekday_x = self.weekday_embed(x[:,:,2])
        day_x = self.day_embed(x[:,:,1])
        month_x = self.month_embed(x[:,:,0])
        
        return hour_x + weekday_x + day_x + month_x + minute_x

class TimeFeatureEmbedding(nn.Module):
    def __init__(self, d_model, embed_type='timeF', freq='h'):
        super(TimeFeatureEmbedding, self).__init__()

        freq_map = {
   'h':4, 't':5, 's':6, 'm':1, 'a'
  • 28
    点赞
  • 204
    收藏
    觉得还不错? 一键收藏
  • 86
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 86
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值