前端笔记1——初识node.js和express,第一个简单后端服务程序的开发

学习前后端分离,首先要自己会搭建简单的前后段环境,最简单的就是使用node.js的express框架,通过这个框架,我们几分钟就可以搭建出后端服务。

非常简单。我们直接上步骤:

1.登上NODE.JS官网下载安装包并安装

地址:http://nodejs.cn/
选择符合自己电脑操作系统的安装包,选择地址一直下一步就可以。
打开cmd输入node -v校验node.js安装正确

显示node.js安装版本

2.安装express框架

打开VS code开发工具,并打开终端工具(关于VS code的使用,请自行查看网络文档,用一下就熟悉),在终端中输入npm init --yes进行初始化。
在这里插入图片描述

然后输入npm i express安装express框架:
express安装
安装成功!

3.利用express框架开发第一个后端服务程序

在VS code中创建express-first.js文档,代码如下:

//1.引入express
const { response } = require('express');
const express=require('express');

//2.创建应用对象
const app=express();

//3.创建路由规则
//request 是对请求报文的封装;response是对响应报文的封装
app.get('/',(request,response)=>{
    response.send('HELLO EXPRESS AJAX')
});

//4.监听端口,启动服务
app.listen(8000,()=>{
    console.log("服务已启动,8000端口监听中")
})

4.验证运行结果

保存文档,然后再终端上输入node express-first.js即可正常运行后端服务程序,再在本机浏览器中打开网页http://127.0.0.1:8000
显示服务运行正常

在浏览器中打开:
浏览器打开显示正确

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
<h3>回答1:</h3><br/>Spark是一个开源的大数据处理框架,它提供了高效的数据处理能力和易用的API,支持多种数据处理模式,包括批处理、流处理和机器习等。Spark的核心是分布式计算引擎,它可以在集群中运行,利用多台计算机的计算能力来处理大规模数据。Spark的优势在于其高效的内存计算和强大的数据处理能力,可以在处理大规模数据时提供更快的计算速度和更高的性能。Spark的生态系统也非常丰富,包括Spark SQL、Spark Streaming、MLlib和GraphX等组件,可以满足不同的数据处理需求。 <h3>回答2:</h3><br/>Spark是一种大规模数据处理引擎,可以较快地处理大数据。Spark并不是单独的一种工具,而是一系列的工具和库的整合。它具备高效的内存计算功能,能够在数秒或数分钟内完成数据处理任务。 Spark的核心是分布式计算引擎,通过将数据分成多个部分进行处理,缩短了计算时间。Spark基于RDD(弹性分布式数据集)进行数据处理,RDD是一种可缓存、可重用和容错的数据结构。RDD抽象了数据分布和分区,提供了简单的API。 Spark的架构包括四个组件:Driver、Cluster manager、Worker、和 Executor。其中Driver是Spark应用程序的主程序,Cluster manager通过Master节点来管理各个Worker节点,Worker节点包含了整个Spark集群的计算资源,Executor执行计算任务。 Spark支持多种编程语言,包括Scala、Java、Python和R。其中Scala是Spark的主要语言,因为它能够将Spark的API最大程度地利用。 除了分布式计算引擎外,Spark还提供了多种库和工具,包括Spark SQL、Spark Streaming、MLlib和GraphX。Spark SQL是一种用于结构化数据处理的库,能够使用SQL语句进行数据查询;Spark Streaming可以实时处理数据流,包括文本和图像等;MLlib是实现了多种机器习算法的库,包括分类、回归、聚类和协同过滤;GraphX可以用于图计算和图分析领域。 总之,Spark是一种强大的大数据处理引擎,能够通过分布式计算架构实现快速的数据处理。它提供了多种语言支持和众多的库和工具,方便用户处理各类数据。 <h3>回答3:</h3><br/>Spark是一款开源的、分布式的大数据处理框架,它的出现将大数据处理的速度提升到了一个全新的水平。Spark的特点在于它的内存计算引擎,这使得Spark的运行速度比传统的MapReduce处理速度要快很多,同时也比传统的Hadoop更加灵活。 Spark可以用于处理各种大数据应用场景,包括批处理、交互式查询、实时流处理等等。同时,Spark的生态系统非常丰富,有众多的开源库和工具可以使用,例如:Spark SQL、Spark Streaming、GraphX、MLlib等等。 Spark的运行环境需要一个集群,因为Spark是分布式的,它可以通过在集群中多个节点上并行执行任务来提升处理速度,而且Spark支持多种集群管理和资源调度工具,例如:Apache Mesos、Hadoop YARN、Spark自带的资源调度程序等等。 Spark的编程接口非常灵活,可以使用Scala、Java、Python等多种编程语言来编写Spark程序。无论是使用哪种编程语言,Spark都提供了相应的API和工具,例如:Spark SQL、Spark Streaming等。 总之,Spark是一个非常强大的大数据处理框架,它的出现是对传统的Hadoop框架的一种补充和升级,不仅可以处理海量的数据,而且可以提供更快速的数据处理速度和更强大的数据处理能力。因此,Spark已经成为现代大数据处理和机器习领域中非常重要的工具之一。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Shaoxi Zhang

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值