0-1背包问题

13 篇文章 0 订阅

01背包问题,是用来介绍动态规划算法最经典的例子,网上关于01背包问题的讲解也很多,我写这篇文章力争做到用最简单的方式,最少的公式把01背包问题讲解透彻。

01背包的状态转换方程 f[i,j] = Max{ f[i-1,j-Wi]+Pi( j >= Wi ), f[i-1,j] }

f[i,j]表示在前i件物品中选择若干件放在承重为 j 的背包中,可以取得的最大价值。
Pi表示第i件物品的价值。
决策:为了背包中物品总价值最大化,第 i件物品应该放入背包中吗 ?

题目描述:

假设山洞里共有a,b,c,d ,e这5件宝物(不是5种宝物),它们的重量分别是2,2,6,5,4,它们的价值分别是6,3,5,4,6,现在给你个承重为10的背包, 怎么装背包,可以才能带走最多的财富。

有编号分别为a,b,c,d,e的五件物品,它们的重量分别是2,2,6,5,4,它们的价值分别是6,3,5,4,6,现在给你个承重为10的背包,如何让背包里装入的物品具有最大的价值总和?

在这里插入图片描述

只要你能通过找规律手工填写出上面这张表就算理解了01背包的动态规划算法。
首先要明确这张表是至底向上,从左到右生成的。

为了叙述方便,用e2单元格表示e行2列的单元格,这个单元格的意义是用来表示只有物品e时,有个承重为2的背包,那么这个背包的最大价值是0,因为e物品的重量是4,背包装不了。

对于d2单元格,表示只有物品e,d时,承重为2的背包,所能装入的最大价值,仍然是0,因为物品e,d都不是这个背包能装的。

同理,c2=0,b2=3,a2=6。

对于承重为8的背包,a8=15,是怎么得出的呢?

根据01背包的状态转换方程,需要考察两个值,

一个是f[i-1,j],对于这个例子来说就是b8的值9,另一个是f[i-1,j-Wi]+Pi;
在这里,

f[i-1,j]表示我有一个承重为8的背包,当只有物品b,c,d,e四件可选时,这个背包能装入的最大价值

f[i-1,j-Wi]表示我有一个承重为6的背包(等于当前背包承重减去物品a的重量),当只有物品b,c,d,e四件可选时,这个背包能装入的最大价值

f[i-1,j-Wi]就是指单元格b6,值为9,Pi指的是a物品的价值,即6

由于f[i-1,j-Wi]+Pi = 9 + 6 = 15 大于f[i-1,j] = 9,所以物品a应该放入承重为8的背包

/**     
	* 0-1背包问题     
	* @param V 背包容量     
	* @param N 物品种类     
	* @param weight 物品重量     
	* @param value 物品价值     
	* @return     
	*/    
public static String ZeroOnePack(int V,int N,int[] weight,int[] value){         
	//初始化动态规划数组        
	int[][] dp = new int[N+1][V+1];        
	//为了便于理解,将dp[i][0]和dp[0][j]均置为0,从1开始计算        
	for(int i=1;i<N+1;i++){            
		for(int j=1;j<V+1;j++){               
			 //如果第i件物品的重量大于背包容量j,则不装入背包                
			 //由于weight和value数组下标都是从0开始,故注意第i个物品的重量为weight[i-1],价值为value[i-1]                
			 if(weight[i-1] > j)                   
				 dp[i][j] = dp[i-1][j];                
			else                    
				dp[i][j] = Math.max(dp[i-1][j],dp[i-1][j-weight[i-1]]+value[i-1]);           
		 }        
	}        
	//则容量为V的背包能够装入物品的最大值为        
	int maxValue = dp[N][V];        
	//逆推找出装入背包的所有商品的编号        
	int j=V;        
	String numStr="";        
	for(int i=N;i>0;i--){            
	//若果dp[i][j]>dp[i-1][j],这说明第i件物品是放入背包的            
	if(dp[i][j]>dp[i-1][j]){                
		numStr = i+" "+numStr;                
		j=j-weight[i-1];           
	 }            
	 if(j==0)                
	 	break;        
	 }        
	 return numStr;      
}

参考:
https://blog.csdn.net/xushiyu1996818/article/details/91491248

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值