动态规划之背包问题以及优化为一维数组和完全背包问题(最易理解的讲解)

       有n个物品,它们有各自的体积和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?

i(物品编号)1234
w(体积)2345
v(价值)3456

背包问题的解决过程
在解决问题之前,为描述方便,首先定义一些变量:Vi表示第 i 个物品的价值,Wi表示第 i 个物品的体积,定义V(i,j):当前背包容量 j,前 i 个物品最佳组合对应的价值,同时背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第 i 个物品选或不选)。

1、建立模型,即求max(V1X1+V2X2+…+VnXn);

2、寻找约束条件,W1X1+W2X2+…+WnXn<capacity;

3、寻找递推关系式,面对当前商品有两种可能性:

包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);
还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i)}。
其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i),但价值增加了v(i);

由此可以得出递推关系式:

j<w(i)      V(i,j)=V(i-1,j)
j>=w(i)     V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i)}
第一种是第i件商品没有装进去,第二种是第i件商品装进去了。没有装进去很好理解,就是V(i-1,j);装进去了怎么理解呢?如果装进去第i件商品,那么装入之前是什么状态,肯定是V(i-1,j-w(i))。由于最优性原理(上文讲到),V(i-1,j-w(i))就是前面决策造成的一种状态,后面的决策就要构成最优策略。两种情况进行比较,得出最优。

4、填表,首先初始化边界条件,V(0,j)=V(i,0)=0;

然后一行一行的填表:

如,i=1,j=1,w(1)=2,v(1)=3,有j<w(1),故V(1,1)=V(1-1,1)=0;
又如i=1,j=2,w(1)=2,v(1)=3,有j=w(1),故V(1,2)=max{ V(1-1,2),V(1-1,2-w(1))+v(1) }=max{0,0+3}=3;
如此下去,填到最后一个,i=4,j=8,w(4)=5,v(4)=6,有j>w(4),故V(4,8)=max{ V(4-1,8),V(4-1,8-w(4))+v(4) }=max{9,4+6}=10……

所以填完表如下图:

5、表格填完,最优解即是V(number,capacity)=V(4,8)=10。

代码实现:

为了和之前的动态规划图可以进行对比,尽管只有4个商品,但是我们创建的数字元素有5个。


#include<iostream>
using namespace std;
#include <algorithm>
 
int main()
{
	int w[5] = { 0 , 2 , 3 , 4 , 5 };			//商品的体积2、3、4、5
	int v[5] = { 0 , 3 , 4 , 5 , 6 };			//商品的价值3、4、5、6
	int bagV = 8;					        //背包大小
	int dp[5][9] = { { 0 } };			        //动态规划表
 
	for (int i = 1; i <= 4; i++) {
		for (int j = 1; j <= bagV; j++) {
			if (j < w[i])
				dp[i][j] = dp[i - 1][j];
			else
				dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - w[i]] + v[i]);
		}
	}
 
	//动态规划表的输出
	for (int i = 0; i < 5; i++) {
		for (int j = 0; j < 9; j++) {
			cout << dp[i][j] << ' ';
		}
		cout << endl;
	}
 
	return 0;
}

 

背包问题最优解回溯


通过上面的方法可以求出背包问题的最优解,但还不知道这个最优解由哪些商品组成,故要根据最优解回溯找出解的组成,根据填表的原理可以有如下的寻解方式:

V(i,j)=V(i-1,j)时,说明没有选择第i 个商品,则回到V(i-1,j);
V(i,j)=V(i-1,j-w(i))+v(i)时,说明装了第i个商品,该商品是最优解组成的一部分,随后我们得回到装该商品之前,即回到V(i-1,j-w(i));
一直遍历到i=0结束为止,所有解的组成都会找到。
就拿上面的例子来说吧:

最优解为V(4,8)=10,而V(4,8)!=V(3,8)却有V(4,8)=V(3,8-w(4))+v(4)=V(3,3)+6=4+6=10,所以第4件商品被选中,并且回到V(3,8-w(4))=V(3,3);
有V(3,3)=V(2,3)=4,所以第3件商品没被选择,回到V(2,3);
而V(2,3)!=V(1,3)却有V(2,3)=V(1,3-w(2))+v(2)=V(1,0)+4=0+4=4,所以第2件商品被选中,并且回到V(1,3-w(2))=V(1,0);
有V(1,0)=V(0,0)=0,所以第1件商品没被选择。

代码实现

背包问题最终版详细代码实现如下:


#include<iostream>
using namespace std;
#include <algorithm>

int w[5] = { 0 , 2 , 3 , 4 , 5 };			//商品的体积2、3、4、5
int v[5] = { 0 , 3 , 4 , 5 , 6 };			//商品的价值3、4、5、6
int bagV = 8;					        //背包大小
int dp[5][9] = { { 0 } };			        //动态规划表
int item[5];					        //最优解情况
 
void findMax() {					//动态规划
	for (int i = 1; i <= 4; i++) {
		for (int j = 1; j <= bagV; j++) {
			if (j < w[i])
				dp[i][j] = dp[i - 1][j];
			else
				dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - w[i]] + v[i]);
		}
	}
}
 
void findWhat(int i, int j) {				//最优解情况
	if (i >= 0) {
		if (dp[i][j] == dp[i - 1][j]) {
			item[i] = 0;
			findWhat(i - 1, j);
		}
		else if (j - w[i] >= 0 && dp[i][j] == dp[i - 1][j - w[i]] + v[i]) {
			item[i] = 1;
			findWhat(i - 1, j - w[i]);
		}
	}
}
 
void print() {
	for (int i = 0; i < 5; i++) {			//动态规划表输出
		for (int j = 0; j < 9; j++) {
			cout << dp[i][j] << ' ';
		}
		cout << endl;
	}
	cout << endl;
 
	for (int i = 0; i < 5; i++)			//最优解输出
		cout << item[i] << ' ';
	cout << endl;
}
 
int main()
{
	findMax();
	findWhat(4, 8);
	print();
 
	return 0;
}

 

01背包的一维数组的问题

 

有一堆已知重量为w[j]以及价值为v[j]的物品,在每件物品只能拿一次的情况下,在j件物品中选取重量不超过i的最大价值,设dp[i]为能拿到就j件物品时对应的最大价值。

代码如下:

#include <iostream>
using namespace std;
int main(){

    int w[5]={0,2,3,4,5};
    int v[5]={0,3,4,5,6};
    int dp[9]={0};
    for(int j=1;j<=4;j++){
        for(int i=8;i>0;i--){
            if(i>=w[j]){
                dp[i]=max(dp[i-w[j]]+v[j],dp[i]);
            }

        }
    }
    cout<<dp[8]<<endl;
    return  0;
}

注意,第二个for (int v=j;v>0;v–) 是从v=j倒序开始更新f[j];
也就是说,当f[v]开始更新的时候,
f[v] = f[v] > (f[v- weight[i]] + value[i])? f[v]: f[v- weight[i]] + value[i];
此时的f[v]其实是跟上一个i-1的时候的f[v]去比较(上一个的f[v]是不能取到第i件物品的)。更新之后如果能取到第i个物品,那么就比较不取第i件物品跟取到第i件物品的价值。取大(f[v]全部初始化为0)
so,注意理解。f[v]是能取第i件以及之前所有物品的最大价值,每次的比较都是围绕能取第i件(含之前的物品)以及第i-1件(含之前的物品)的价值。


上面时01背包问题,下面四完全背包问题。

#include <iostream>
using namespace std;
int main(){

    int w[5]={0,2,3,4,5};
    int v[5]={0,3,4,5,6};
    int dp[9]={0};
    for(int j=1;j<=4;j++){
        for(int i=1;i<=8;i++){
            if(i>=w[j]){
                dp[i]=max(dp[i-w[j]]+v[j],dp[i]);
            }
        }
    }
    cout<<dp[8]<<endl;
    return  0;
}

注意,修改的仅仅是第二个for循环的顺序。由倒序改成顺序。
01背包中,为什么要倒序,因为每个背包只能拿一次。那么在每一次的i,v循环中,我们仅仅需要知道的是第i件物品能不能放下,能的话跟上一次的比较就可以。因为上一次循环的f[v]是在i-1件物品只能拿一次的情况下的最大值,倒序是为了仅跟上次的状态(i-1件物品)比较。

完全背包中相反,采用顺序。
举例,第i件物品重量是1,价值是value;
那么这个时候要先更新f[1],比较前i-1件物品的f[1]以及value;
然后到f[2],f[2]就应该max(前i件物品的f[2-1]+value,前i-1件物品的f[2-1])然后跟前i-1件物品的f[2]比较。
f[3]同理。一路推到f[v]。
完全背包比较的应该是:前i件物品的f[v-weight]+value,前i-1件物品的f[v-weight],前i-1件物品的f[v]这三者的比较。也就是当前状态,需要先推导出重量v之前的当前状态,才能得到最大值。这就是完全背包
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值