在油气地震资料积分法偏移成像中,起伏地表处理

在油气地震资料积分法偏移成像中,起伏地表情况会带来波场传播路径畸变、静校正问题以及成像精度下降等挑战。以下是处理起伏地表的常用方法和技术要点:


1. 静校正预处理

  • 高程静校正:将地表各接收点校正到统一基准面(浮动基准面或海平面),消除地表起伏引起的时差。
  • 折射静校正:利用初至波信息估算近地表低速层影响,校正表层速度变化导致的时差。
  • 剩余静校正:通过迭代优化解决剩余时差问题,提高同相轴对齐精度。

2. 基于波动方程的起伏地表直接成像方法

(1) 波动方程延拓
  • 向下延拓:将波场从起伏地表逐步延拓到地下,避免基准面校正带来的误差。
    • 方法:使用有限差分法(如单程波或双程波方程)或相位屏法,直接以起伏地表为初始边界。
    • 关键点:需精确已知近地表速度模型,并处理地表处的边界条件(如自由表面边界)。
(2) 起伏地表克希霍夫偏移改进
  • 旅行时计算修正
    • 采用射线追踪(如弯曲射线法)或程函方程求解起伏地表下的旅行时。
    • 考虑地表高程对射线路径的影响,修正格林函数。
  • 加权函数调整:在积分公式中引入高程相关权重,补偿振幅变化。

3. 坐标系变换法

  • 曲线网格或贴体网格:将物理域(起伏地表)映射到计算域(水平网格),通过坐标变换简化波动方程求解。
    • 示例:将笛卡尔坐标系转换为与地表一致的曲线坐标系,使波动方程在变换后形式上保持规则。
    • 优势:避免阶梯状网格近似,提高精度。

4. 有限元或谱元法(SEM)

  • 非结构化网格:采用三角形/四面体网格贴合起伏地表,适应复杂地形。
    • 适用场景:双程波偏移或全波形反演(FWI),可精确模拟地表散射波。

5. 数据规则化与插值

  • 波场重建:将起伏地表接收的数据通过波场外推或插值到虚拟水平面上,再执行传统偏移。
    • 技术:使用波动方程基准面校正(Wave Equation Datuming, WED)将数据向上或向下延拓至参考面。

6. 近地表速度建模

  • 联合反演:结合初至波走时反演、面波分析等手段,构建高精度近地表速度模型。
  • 层析成像:利用反射波或折射波数据约束浅层速度结构,减少速度误差对偏移的影响。

7. 实际应用注意事项

  • 计算效率:起伏地表直接成像通常需要更大的计算量,需优化算法(如并行计算、GPU加速)。
  • 数据质量:低信噪比地区需结合去噪和信号增强技术。
  • 混合策略:结合静校正与波动方程延拓,平衡精度与效率。

总结

处理起伏地表的核心在于消除高程影响并精确描述波场传播。现代方法倾向于直接基于波动方程(如逆时偏移或最小二乘偏移)结合高精度近地表模型,避免静校正的近似假设。实际应用中需根据数据特点、计算资源及精度需求选择合适方法。


柯希霍夫积分法偏移成像中的起伏地表处理

柯希霍夫积分法偏移成像是一种常用的地震成像方法,在处理起伏地表情况时需要特殊考虑。以下是处理起伏地表的关键技术和示例代码。

起伏地表处理关键技术

  1. 地表一致性校正:将数据校正到起伏地表下的参考面
  2. 波场延拓:从起伏地表向地下延拓波场
  3. 积分路径调整:根据地表起伏调整积分路径
  4. 静校正处理:消除地表起伏引起的时差

示例代码

以下是处理起伏地表的柯希霍夫偏移的简化Python示例:

import numpy as np
from scipy.interpolate import RegularGridInterpolator

def kirchhoff_migration_irregular_surface(data, velocity_model, surface_elevation, 
                                         dx, dz, dt, aperture):
    """
    起伏地表柯希霍夫偏移
    
    参数:
        data: 3D地震数据体 [shots, receivers, time]
        velocity_model: 2D速度模型 [x, z]
        surface_elevation: 1D地表高程数组 [x]
        dx: x方向采样间隔
        dz: z方向采样间隔
        dt: 时间采样间隔
        aperture: 偏移孔径
        
    返回:
        migrated_image: 2D偏移结果 [x, z]
    """
    nx, nz = velocity_model.shape
    nt = data.shape[2]
    migrated_image = np.zeros((nx, nz))
    
    # 创建插值器用于不规则地表
    x_coords = np.arange(nx) * dx
    z_coords = np.arange(nz) * dz
    vel_interp = RegularGridInterpolator((x_coords, z_coords), velocity_model)
    
    for ix in range(nx):
        # 当前地表位置
        surface_z = surface_elevation[ix]
        
        for iz in range(nz):
            # 地下点深度(相对于地表)
            z_depth = iz * dz
            
            # 实际深度
            true_z = surface_z + z_depth
            
            # 计算贡献
            total_amp = 0.0
            
            # 在孔径范围内积分
            for sx in range(max(0, ix-aperture), min(nx, ix+aperture+1)):
                # 炮点地表位置
                sx_surface_z = surface_elevation[sx]
                
                # 计算从炮点到成像点的旅行时
                dist = np.sqrt((sx-ix)**2 * dx**2 + (true_z - sx_surface_z)**2)
                time = dist / velocity_model[sx, iz]
                time_sample = int(time / dt)
                
                if time_sample < nt:
                    total_amp += data[sx, sx, time_sample]  # 简化示例
                    
            migrated_image[ix, iz] = total_amp
            
    return migrated_image

开源代码参考

以下是一些可用于参考的开源项目:

  1. Madagascar (http://www.ahay.org/)

    • 包含多种地震处理算法,包括柯希霍夫偏移
    • 支持起伏地表处理
  2. Seismic Unix (https://github.com/JohnWStockwellJr/SeisUnix)

    • 经典地震处理软件包
    • 包含柯希霍夫偏移实现
  3. PySIT (https://github.com/pysit/pysit)

    • Python地震成像工具包
    • 包含波动方程和射线理论成像方法
  4. OpenSWPC (https://github.com/tktmyd/OpenSWPC)

    • 包含地震波传播和成像代码

实际应用注意事项

  1. 静校正:在偏移前通常需要应用静校正处理
  2. 速度模型:需要准确的速度模型,特别是近地表速度
  3. 振幅处理:需要考虑球面扩散和透射损失补偿
  4. 反假频:需要适当的反假频滤波

以上代码仅为概念性示例,实际工业级实现需要考虑更多因素如倾角限制、振幅加权、并行计算等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值