如果有gcd(n,m)==1gcd(n, m) == 1gcd(n,m)==1那么 ϕ(nm)=ϕ(n)∗ϕ(m)∗dϕ(d)\phi(nm) = \frac{\phi(n) * \phi(m) * d}{\phi(d)}ϕ(nm)=ϕ(d)ϕ(n)∗ϕ(m)∗d
欧拉函数的性质
最新推荐文章于 2025-09-13 19:27:03 发布
这篇博客探讨了欧拉函数的特性,当两个正整数n和m的最大公约数gcd(n,m)等于1时,欧拉函数φ(nm)与φ(n)和φ(m)的关系式。它指出,当φ(nm)能够整除d=φ(d)时,φ(nm)等于φ(n)与φ(m)乘积除以φ(d)的商。这展示了数论中欧拉函数的重要性质之一。
3万+

被折叠的 条评论
为什么被折叠?



