简述欧拉函数性质与应用

定义

欧拉函数 φ ( n ) φ(n) φ(n)(n为正整数),是指小于n的正整数中,与n互质的数的个数。(特别的, φ ( 1 ) = 1 φ(1)=1 φ(1)=1)

部分性质

  1. 欧拉函数的通式:
    φ ( n ) = n ∗ ∏ ( 1 − 1 p i ) φ(n)= n*\prod{(1-\frac{1}{p_i})} φ(n)=n(1pi1),其中 p 1 , p 2 , . . . , p m p_1,p_2,...,p_m p1,p2,...,pm为n的所有质因子
    证明:
    对于质因子 p i p_i pi来说,由于倍数均匀分布,所以1~n中 p i p_i pi的倍数有 n / p i n/p_i n/pi个,同理考虑每个质因子,那么有:
    φ ( n ) = n − n / p 1 − n / p 2 − . . . − n / p m φ(n)=n-n/p_1-n/p_2-...-n/p_m φ(n)=nn/p1n/p2...n/pm φ ( n ) = n ( 1 − 1 / p 1 − 1 / p 2 − . . . − 1 / p m ) φ(n)=n(1-1/p_1-1/p_2-...-1/p_m) φ(n)=n(11/p11/p2...1/pm) φ ( n ) = n ∗ ∏ ( 1 − 1 p i ) φ(n)=n*\prod{(1-\frac{1}{p_i})} φ(n)=n(1pi1)
  2. 对于质数p, φ ( p ) = p − 1 φ ( p ) = p − 1 φ(p)=p1
    证明: 由于p是质数,所以只有p的倍数与p不互质。而1~p-1均小于p,不可能是p的倍数。所以1~p-1全都与p互质。
  3. 欧拉函数是积性函数,但不是完全积性函数。若m,n互质,则 φ ( n m ) = φ ( n ) φ ( m ) φ(nm)=φ(n)φ(m) φ(nm)=φ(n)φ(m)
  4. a ∣ n a|n an,则 φ ( a n ) = a ∗ φ ( n ) φ(an)=a*φ(n) φ(an)=aφ(n)
    证明:
    设那 φ ( n ) φ(n) φ(n)个整数分别为 d 1 , d 2 , . . . , d φ ( n ) d_1,d_2,...,d_{φ(n)} d1,d2,...,dφ(n) ,由于 a ∣ n a|n an ,所以这些数与 a a a互质,也就与 a n an an互质。则 d 1 + i x , d 2 + i x , . . . , d φ ( n ) + i x ( i = 0 , 1 , 2 , . . . , a − 1 ) d_1+ix,d_2+ix,...,d_{φ(n)}+ix(i=0,1,2,...,a-1) d1+ix,d2+ix,...,dφ(n)+ix(i=0,1,2,...,a1)也与 a n an an互质,一共有 a a a组。所以一共有 a ∗ φ ( n ) a*φ(n) aφ(n)个小于 a n an an且与之互质的正整数。

应用

欧拉筛求欧拉函数

通过以上的性质2、3、4,可以通过 O ( n ) O(n) O(n)复杂度的递推来求出1~n的欧拉函数值。

void getoula()
{
	for(ll i=2;i<=n;i++)
	{
		if(!flag[i])//如果是质数
		{
			prime[++cnt]=i;
			phi[i]=i-1;//利用性质2直接得到欧拉函数值
		}
		for(ll j=1;j<=cnt&&i*prime[j]<=n;j++)
		{
			flag[i*prime[j]]=1;
			if(i%prime[j]==0)//如果i被prime[j]整除
			{
				phi[i*prime[j]]=phi[i]*prime[j];//性质4
				break;
			}
			else//prime[j]是质数,无法整除等价于两数互质
			phi[i*prime[j]]=phi[i]*(prime[j]-1);//性质3积性函数
		}
	}
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值