动态规划经典代码

本文介绍了动态规划在解决0-1背包和完全背包问题中的应用。0-1背包问题中,给定物品的重量和价值,目标是找到装入背包的最大价值。完全背包问题则涉及无限数量的物品,目标是找出装满背包的不同方法数。通过定义dp状态转移矩阵,可以有效地求解这两个问题。
摘要由CSDN通过智能技术生成

一:0-1背包

描述:给你⼀个可装载重量为 W 的背包和 N 个物品,每个物品有重量和价值两个属性。其中第 i 个物品的重量为 wt[i] ,价值为 val[i] ,现在让你⽤这个背包装物品,最多能装的价值是多少?

dp[i][w] 的定义如下:对于前 i 个物品,当前背包的容量为 w ,这种
情况下可以装的最⼤价值是 dp[i][w] 。

//0-1背包
//给你⼀个可装载重量为 W 的背包和 N 个物品,每个物品有重量和价值两
//个属性。其中第 i 个物品的重量为 wt[i] ,价值为 val[i] ,现在让你⽤
//这个背包装物品,最多能装的价值是多少?
//输出为最多能装的价值

import java.util.Scanner;
public class Main {
   
    public static void main(String[] args) {
   
        Scanner sc = new Scanner(System.in);
        int N = sc.nextInt();
        int W = sc.nextInt();
        int[] wt = new int[N];
        int[] val = new int[N];
        for(int i = 0; i < N; i++){
   
            wt[i] = sc.nextInt();
            val[i] = sc.nextInt();
        }
        System
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值