数组的一些操作:
1.二分查找法:
要求:
- 一定是有序的数组
- 要有个中间数 ,即数组长度一定要大于1
- 在查找的过程中,如果找到了,直接返回,没有找到,返回-1
代码示例:
import java.io.BufferedReader;
import java.io.InputStreamReader;
/**
* 二分查找
* @author Zireael
*
*/
public class HalfSearch {
public static void main(String[] args) throws Exception{
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
//初始化一个有序数组
int[] arr = new int[] {2,5,11,21,44,54,61,77,98};
System.out.println("请输入要查找的数:");
while(true) {
//从键盘获取要查询的数字
int num = Integer.parseInt(reader.readLine());
int key = search(num,arr);
if (key != -1) {
System.out.println(num + " 的索引是" + key);
}else {
//如果返回值为-1,则显示没有这个数
System.out.println("没有这个数");
}
}
}
public static int search(int num,int[] arr) {
//定义数组起始下标
int left = 0;
//定义数组结尾下标
int right = arr.length;
//如果数组为空或者数组的长度小于1,则返回-1
if (arr == null || arr.length < 1) {
return -1;
}else {
while(left < right) {
//定义中间下标
int mid = (right + left)/2;
if (arr[mid] == num) {
//找到了就返回该下标
return mid;
}else if (arr[mid] > num) {
//如果查询的元素小于中间下标对应的元素,则结尾下标自减
right--;
}else if (arr[mid] < num) {
//如果查询的元素大于中间下标对应的元素,则起始下标自增
left++;
}
}
}
return -1;
}
}
结果图:
当然,JDK本身就封装着一个方法来进行数组的二分查找,叫做binarySearch()
2.相关的一些算法:
2.1 冒泡排序
冒泡排序属于比较类排序算法
该算法会将数组的前一个元素与后一个元素作比较,如果前者大于后者则两者位置调换,直到该数组的元素为从小到大有序排列为止
最好(已经排序好了的数组)时间复杂度:O(n)
最坏时间复杂度:O(n²)
平均时间复杂度:O(n²)
空间复杂度:O(1)
稳定性:稳定
代码示例:
import java.util.Iterator;
/**
* 冒泡排序
* @author Zireael
*
*/
public class BubblleSort {
public static void main(String[] args) {
//定义一个乱序的数组
int[] arr = new int[] {-1,2,1,8,4,6,13,7,21,3,0};
//调用排序方法
int[] arr2 = sort(arr);
//打印排序后的数组
for (int i : arr2) {
System.out.print(i);
System.out.print(" ");
}
}
public static int[] sort(int[] arr) {
for(int i=1;i < arr.length;i++){
boolean flag = true; //打个标记
for(int j=0;j < arr.length - i;j++){
if (arr[j] > arr[j+1]) {
//如果数组的前一个数大于后一个数,则两个数的位置调换
int tmp = arr[j+1];
arr[j+1] = arr[j];
arr[j] = tmp;
flag = false;//一旦发现前一个数大于后一个数,则将标记改为false
}
}
if (flag) {
//一直到前一个数都小于后一个数为止
break;
}
}
return arr;
}
}
运行结果图:
2.2 选择排序:
选择排序是一种简单直观的排序算法,无论什么数据进去都是 O(n²) 的时间复杂度。所以用到它的时候,数据规模越小越好。
工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。
最好时间复杂度:O(n²)
最坏时间复杂度:O(n²)
平均时间复杂度:O(n²)
空间复杂度:O(1)
稳定性:不稳定
代码示例:
/**
* 选择排序
* @author Zireael
*
*/
public class SelectSort {
public static void main(String[] args) {
int[] arr= new int[] {5,2,1,-4,6,13,27,18};
for(int i=0;i < arr.length - 1;i++){
//假设一个最小值索引
int min = i;
for(int j=i+1;j < arr.length;j++){
if (arr[j] < arr[min]) {
//如果下标为j的索引对应的值小于最小值索引对应的值
min = j; //将j赋值给min
}
}
if (min != i) {
//如果min不等于i,说明发现了更小的值,则调换索引位置
int tmp = arr[i];
arr[i] = arr[min];
arr[min] = tmp;
}
}
for (int i : arr) {
System.out.print(i + " ");
}
}
}
2.3 快速排序
快速排序用到了分治思想,快速排序在划分子问题的时候经过多一步处理,将划分的两组数据划分为一大一小,划分的不定性使得快速排序的时间复杂度并不稳定。
快速排序的基本思想:通过一趟排序将待排序列分隔成独立的两部分,其中一部分记录的元素均比另一部分的元素小,则可分别对这两部分子序列继续进行排序,以达到整个序列有序。
最好时间复杂度:O(n * log n)
最坏时间复杂度:O(n * log n)
平均时间复杂度:O(n * log n)
空间复杂度:O(log n)
稳定性:不稳定
代码示例:
/**
* 快速排序
* @author Zireael
*
*/
public class QuickSort {
public static void main(String[] args) {
int[] arr= new int[] {5,2,1,-4,6,13,27,18};
if (arr.length == 0) {
return;
}else {
quickSort(arr,0,arr.length-1);
}
for (int i : arr) {
System.out.print(i + " ");
}
}
public static void quickSort(int[] arr,int leftIndex,int rightIndex) {
if (leftIndex > rightIndex) {
return;
}
int i = leftIndex;
int j = rightIndex;
int p = arr[i];//确立一个基准值
//结束循环的条件必定是i=j
//将小于基准值的排在左边,将大于基准值的排在右边
while(i < j) {
//从右往左扫描
if (arr[j] >= p) {
j--;
}
arr[i] = arr[j];
//从左往右扫描
if (arr[i] <= p) {
i++;
}
arr[j] = arr[i];
}
//基准归位,这样一来基准值就处于数组元素的中间了
arr[i] = p;
//排左边
quickSort(arr, leftIndex, i - 1);
//排右边
quickSort(arr, j+1, rightIndex);
}
}
运行结果:
3. 多维数组
多维数组就是数组的嵌套,即数组里的元素是更低维度的数组元素
二维数组定义方式:
dataType arrayName[length1][length2];
//例子
int[][] arr = new int[2][3];
因为纬度越高的数组,取数据和遍历的难度也就越大,所以一般只是用二维数组