前言
电脑华硕天选air2025,5060显卡
5060显卡需要支持到sm120的推理计算

因此,需要下载CUDA最新版,在https://pytorch.org/get-started/locally/中,选着Nightly版本,选择一个适合5060的CUDA版本12.8,并复制下面的网址并打开:https://download.pytorch.org/whl/nightly/cu128

1、安装CUDA12.8和cuDNN
https://developer.nvidia.com/cuda-toolkit-archive,就下12.8.1最新版的

下载完,正常安装就行,省略。
https://developer.nvidia.com/cudnn-downloads

下载,默认安装就行。
2、安装pytorch
打开前面获得的网址:https://download.pytorch.org/whl/nightly/cu128
找到torch和torchvision

分别点进去,找到CUDA12.8对应最新的torch(20250909)和torchvision(20250910,日期必须在torch后面)版本
注意:CU128指对应CUDA12.8版本,CP310指对应python3.10版本,必须一致
下载到指定目录:比如我的:D:\Desktop

开始安装pytorch:
1️⃣创建conda虚拟环境(python版本对应上述的3.10)
conda create --name yolov8 python=3.10
2️⃣进入环境
conda activate yolov8
3️⃣进入存放torch和torchvision的目录,并以此按次序安装离线包
cd D:\Desktop
pip install "torch-2.9.0.dev20250909+cu128-cp310-cp310-win_amd64.whl"
pip install "torchvision-0.24.0.dev20250910+cu128-cp310-cp310-win_amd64.whl"
4️⃣验证环境安装是否成功
进入python中,确认pytorch安装情况,代码一行一行确认。
python -c "import torch; print('PyTorch版本:', torch.__version__); print('CUDA可用:', torch.cuda.is_available()); print('GPU数量:', torch.cuda.device_count()); print('CUDA版本:', torch.version.cuda if torch.cuda.is_available() else '未安装'); print(torch.cuda.get_arch_list())"

版本正确,能true使用,主要是支持sm120计算,就配置成功啦。

16XX的显卡安装cu102的版本,否则可能训练出现问题
30XX、40xx显卡,要安装cu111以上的版本,否则无法运行
1471

被折叠的 条评论
为什么被折叠?



