深度学习实战7-基于神经网络的商品评论的情感分析与预测实战案例

该博客介绍了使用神经网络进行京东商品评论的情感分析。首先进行了数据预处理,包括创建词库索引和填充序列。接着构建了一个包含嵌入层、全连接层的神经网络模型,并用二分类交叉熵作为损失函数,Adam作为优化器。最后,模型在测试集上取得了85.63%的准确率。
该文章已生成可运行项目,


在这里插入图片描述

前言说明

大家好,我是微学AI,今天给大家介绍一下基于神经网络的商品评论的情感分析与预测实战案例。进几年网上购物越来越流行,在加上疫情的缘故,很多人足不出户,使得更多人选择网购。这让京东、淘宝、拼多多等电商平台得到了很大的发展机遇。但是,这种需求也引发了更多的店商平台的激列竞争。在这种电商平台激烈竞争的大背景下,除了提高商品质量、压低商品价格外。了解更多消费者的心声对干店商平台来说也变得越来越有必要,其中非常重要的方式就是对消费者的文本评论等非结构化的数据进行内在信息的数据挖掘和分析,有利于对应商品的生产厂家自身竞争力的提升。对某商品的评论进行文本挖掘分析,目的是分析用户对某商品的情感倾向,从商品评论中挖掘产品的优点和缺点,提炼出不同品牌商品的卖点。
学习视频:https://www.bilibili.com/video/BV1Mc8jzQEno/?spm_id_from=333.1387.homepage.video_card.click&vd_source=1663f0c1da71bf058eb8dce697af1ae5
在这里插入图片描述

一、前期工作

1. 导入库包

import data_loader
from tensorflow.keras.preprocessing import sequence
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Embedding
from tensorflow.keras.layers import Flatten
from tensorflow.keras.utils import to_categorical
import numpy as np

代码中导入data_loader模型,做数据处理和导入,详细代码包和数据集:https://pan.baidu.com/s/14Do1RrZXOzZokNAcX4Yz2A
提取码:wxai

2. 导入数据

x_train,y_train,x_test,y_test =data_loader.load_data()

这里选取了某电商平台的各种商品的评论数据,数据样例:
在这里插入图片描述

3. 数据处理

#创建评论数据的词库索引
vocalen,word_index = data_loader.createWordIndex(x_train,x_test)
print(vocalen)

#获取训练数据每个词的索引
x_train_index =data_loader.word2Index(x_train,word_index)
x_test_index=data_loader.word2Index(x_test,word_index)

#最大长度的限制
maxlen =25
x_train_index =sequence.pad_sequences(x_train_index,maxlen=maxlen )
x_test_index =sequence.pad_sequences(x_test_index,maxlen=maxlen)
y_train= to_categorical(y_train)
y_test= to_categorical(y_test)

二、神经网络模型构建

model =Sequential()
model.add(Embedding(trainable=False, input_dim= vocalen+1, output_dim=300, input_length=maxlen))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dense(256, activation= 'relu'))
model.add(Dense(256, activation='relu'))
model.add(Dense(2, activation= 'sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam',metrics=['accuracy']) #二分类问题

三、训练模型与测试

model.fit(x_train_index, y_train,batch_size=512, epochs=200)
score, acc = model.evaluate(x_test_index, y_test)
print('Test score:', score)
print('test accuracy:',acc)

test = np.array([x_test_index[1000]])
print(test)
print(test.shape)

predict = model.predict(test)
print(predict)
print(np.argmax(predict,axis=1))

运行结果如下:
Test score: 1.740
test accuracy: 0.8563
在测试集的准确率为0.8563
机器借助模型可以对评论标注情感分析的标签,本文适合入门者阅读调试,后续将进行文本主题挖掘,分析商品的优点与缺点,提供需要改进的方向。

四、总结

本程序的测试得分是1.740,而测试准确率为0.8563(或者85.63%),这意味着模型在测试集上正确预测评论情感的比率达到了85.63%,这是一个相对较高的准确率,表明该模型对于情感分析任务是相当有效的。 展望未来的工作,将计划进一步开展文本主题挖掘,目的是不仅要识别出评论中的正面或负面情绪,还要深入挖掘商品的具体优点与缺点。这样做不仅能够提供更细致的反馈给商家或产品开发者,指出需要改进的方向,而且还能增强用户对产品的理解和满意度。

往期作品:

深度学习实战项目

1.深度学习实战1-(keras框架)企业数据分析与预测

2.深度学习实战2-(keras框架)企业信用评级与预测

3.深度学习实战3-文本卷积神经网络(TextCNN)新闻文本分类

4.深度学习实战4-卷积神经网络(DenseNet)数学图形识别+题目模式识别

5.深度学习实战5-卷积神经网络(CNN)中文OCR识别项目

6.深度学习实战6-卷积神经网络(Pytorch)+聚类分析实现空气质量与天气预测

7.深度学习实战7-电商产品评论的情感分析

8.深度学习实战8-生活照片转化漫画照片应用

9.深度学习实战9-文本生成图像-本地电脑实现text2img

10.深度学习实战10-数学公式识别-将图片转换为Latex(img2Latex)

11.深度学习实战11(进阶版)-BERT模型的微调应用-文本分类案例

12.深度学习实战12(进阶版)-利用Dewarp实现文本扭曲矫正

13.深度学习实战13(进阶版)-文本纠错功能,经常写错别字的小伙伴的福星

14.深度学习实战14(进阶版)-手写文字OCR识别,手写笔记也可以识别了

15.深度学习实战15(进阶版)-让机器进行阅读理解+你可以变成出题者提问

16.深度学习实战16(进阶版)-虚拟截图识别文字-可以做纸质合同和表格识别

17.深度学习实战17(进阶版)-智能辅助编辑平台系统的搭建与开发案例

18.深度学习实战18(进阶版)-NLP的15项任务大融合系统,可实现市面上你能想到的NLP任务

19.深度学习实战19(进阶版)-ChatGPT的本地实现部署测试,自己的平台就可以实现ChatGPT

…(待更新)

本文章已经生成可运行项目
评论 7
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值