大家好,我是微学AI,今天给大家介绍一下机器学习实战10-基于spark大数据技术与机器学习的结合应用实战,Spark是一种快速、通用的大数据处理框架。它是由加州大学伯克利分校AMPLab开发。Spark提供了一个分布式计算的平台,可以在集群中并行处理大规模的数据集。
目录
1.大数据技术介绍
2.Spark的特点
3.为什么要用Spark
4.Spark与Pandas的区别
5.使用Python和Spark开发大数据应用
6.基于spark的机器学习训练代码
1.大数据技术介绍
大数据技术是指为了处理和分析大规模数据而发展的一系列技术和工具。随着互联网、物联网和各种传感器技术的发展,我们能够采集到越来越多的数据。这些数据通常规模庞大、复杂多样,并且具有高速增长的特点。大数据技术致力于解决如何高效地存储、处理和分析这些海量数据的问题。
以下是几种常见的大数据技术:
1.分布式存储系统:大规模数据的存储需要使用分布式存储系统,以提供高容量、高可靠性和高扩展性。例如,Hadoop分布式文件系统(HDFS)和Apache Cassandra等分布式数据库系统。
2.分布式计算框架