使用Pyecharts进行全国水质TDS地图可视化全过程1:总体过程简述

本文详述了使用Python进行全国水质TDS数据的清洗、分析和可视化的过程。首先,从大数据年报和安装档案中筛选并清洗TDS数据,然后通过Python进行地址拆分和数据计算。接着,利用Pyecharts生成363张省市区县联动的地图,展示了全国水质的分布情况。虽然在展示过程中遇到一些图片显示问题,但完整流程为读者提供了全面的数据处理和可视化教程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、效果图

二、实现过程1:数据来源及清洗

三、实现过程2:数据分析

四、实现过程3:数据可视化


分享使用Pyecharts进行全国水质TDS地图可视化的全过程。

一、效果图

本次对全国TDS进行了分析,一共生成了363张地图,实现省、市、区县级地图联动。

有点坑,CSND显示不了我画得这么好的地图,显示图片违规。。。只有这张放出来了:

二、实现过程1:数据来源及清洗

数据来源主要是2021年大数据年报里的数据,以及2019-2021年安装档案。

年报里的数据有tds,内机条码和所属省市(但不全面,存在缺失),不能支撑我们区县级地图的绘制。因此数据清洗主要做了如下内容:

1.TDS有效值筛选。

2.通过内机条码,匹配安装档案里的安装地址。数据量很大,需要匹配上百万行Excel数据。用到的技巧,见本系列第2篇文章《职场Excel,使用Power Query 进行百万行级别数据匹配》

3.去除不可见字符。

4.提取安装地址对应的省、市、区/县、村、镇,由于部分安装地址不全,因此先进行了数据补全,再进行地址拆分。用到的技术,见本系列第3篇文章《用Python拆分物流地址以及实现地址补全》。

三、实现过程2:数据分析

主要将省、市、区县进行了拆分,并分别计算了平均值、中位数、95%分位数以及最大值。

全国有34个省级行政区,333个地级行政区,2844个县级行政区,用Excel处理还是比较麻烦的,因此写了程序去计算。最后输出了省、市、区县级的数据。

这里用到了一个相关技术,使用Python对Excel进行拆分,见本系列第4篇文章《使用Python将Excel表拆分至多个Excel文件》。

四、实现过程3:数据可视化

有了数据后,下面开始可视化。

这里介绍两种方法,一种是用Excel自带的三维地图进行可视化,见本系列第5篇文章《利用Excel地图实现美国水质地图可视化》。

我本来想在这里放个地图,奈何显示不出来。。。

用Excel比较麻烦的是,有时候地址找不成功,但因为它提供了经纬度定位,因此我们在做具体的地点(有明确的经纬度)时,它还是能比较好满足的,问题在于怎么样知道经纬度,用到的相关技术,见本系列第6篇文章《利用Python Selenium自动化获取页面信息》

Excel本身也能实现分层的地图,如下面的效果:

但问题就是它的局限性大,而且市级、区县级可视化经常定位不准。

Excel地图还有一种用的较多的是使用ExcelPro里的地图模板,但同样功能有限。

因此最后我用了pyecharts进行这次的可视化,具体如何实现,见本系列第7篇文章《使用pyecharts画地图》。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值