train_test_split详解



前言

train_test_split是python在机器学习中常常需要用到的一个方法
安装方法:pip install sklearn
导入方法:from sklearn.model_selection import train_test_split

一.train_test_split是什么?

train_test_split方法能够将数据集按照用户的需要指定划分为训练集和测试集/

二、使用步骤

1.引入库

from sklearn.model_selection import train_test_split

   
   
  • 1

2.读入数据

X_train,X_test, y_train, y_test =train_test_split(train_data,train_target,test_size=0.25, random_state=0,stratify=y)
# train_data:所要划分的样本特征集
# train_target:所要划分的样本结果
# test_size:样本占比,如果是整数的话就是样本的数量
# random_state:是随机数的种子。
# 随机数种子:其实就是该组随机数的编号,在需要重复试验的时候,保证得到一组一样的随机数。比如你每次都填1,其他参数一样的情况下你得到的随机数组是一样的。但填0或不填,每次都会不一样。

   
   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

3.参数意义

Code意义
train_data待划分的样本特征集合
X_train划分出的训练数据集数据
X_test划分出的测试数据集数据
y_train划分出的训练数据集的标签
y_test划分出的测试数据集的标签
test_size若在0~1之间,为测试集样本数目与原始样本数目之比;若为整数,则是测试集样本的数目
random_state随机数种子,不同的随机数种子划分的结果不同
stratifystratify是为了保持split前类的分布,例如训练集和测试集数量的比例是 A:B= 4:1,等同于split前的比例(80:20)。通常在这种类分布不平衡的情况下会用到stratify。

总结

train_test_split是每个机器学习学习者必学的方法之一,这里给大家总结出了详细的用法。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DOT Manager

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值