今天把神经网络的代码运行起来了。由于代码是用Python2编写的,在Python3环境下有些错误,经过百度后成功解决,包括cPickle被pickle替换、pickle.load的编码等。运行结果如下图:
对于代码几个方法的理解如下:
- feedforward,根据输入计算整个神经网络的输出值。理解这个函数的关键之处是要理解self.weights的数据结构,这是一个lij的三维数组,其中,l是神经网络的层数减1,之所以减1,是因为每个权重都代表了两个神经元之间的权重;i是后一层神经元的数量,j是前一层神经元的数量。比如,示例代码中的数据结构就是[(30784),(1030)];
- SGD,基于小批量数据方法训练神经网络,利用梯度下降算法计算神经元的权重和偏置,该方法是network类的入口方法。
- update_mini_batch,基于小批量训练数据更新神经网络的权重和偏置值。
- backprop,计算代价函数值,这个方法还没有读懂。
- evaluate,利用测试数据验证神经网络预测正确的数量。
- sigmoid_prime,S型函数的导数计算,S型函数(sigmoid)的求导过程如下: